ترغب بنشر مسار تعليمي؟ اضغط هنا

Time Structure of Ultra-High Energy Cosmic Ray Sources and Consequences for Multi-messenger Signatures

90   0   0.0 ( 0 )
 نشر من قبل Guenter Sigl
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guenter Sigl




اسأل ChatGPT حول البحث

The latest results on the sky distribution of ultra-high energy cosmic ray sources have consequences for their nature and time structure. If the sources accelerate predominantly nuclei of atomic number A and charge Z and emit continuously, their luminosity in cosmic rays above ~6x10^{19} eV can be no more than a fraction of ~5x10^{-4} Z^{-2} of their total power output. Such sources could produce a diffuse neutrino flux that gives rise to several events per year in neutrino telescopes of km^3 size. Continuously emitting sources should be easily visible in photons below ~100 GeV, but not in TeV gamma-rays which are likely absorbed within the source. For episodic sources that are beamed by a Lorentz factor Gamma, the bursts or flares have to last at least ~0.1 Gamma^{-4} A^{-4} yr. A considerable fraction of the flare luminosity could go into highest energy cosmic rays, in which case the rate of flares per source has to be less than ~5x10^{-3} Gamma^4 A^4 Z^2 yr^{-1}. Episodic sources should have detectable variability both at GLAST and TeV energies, but neutrino fluxes may be hard to detect.

قيم البحث

اقرأ أيضاً

102 - V. Berezinsky 2009
The status of the Greisen-Zatsepin-Kuzmin (GZK) cutoff and pair-production dip in Ultra High Energy Cosmic Rays (UHECR) is discussed.They are the features in the spectrum of protons propagating through CMB radiation in extragalactic space, and discov ery of these features implies that primary particles are mostly extragalactic protons. The spectra measured by AGASA, Yakutsk, HiRes and Auger detectors are in good agreement with the pair-production dip, and HiRes data have strong evidences for the GZK cutoff. The Auger spectrum,as presented at the 30th ICRC 2007, agrees with the GZK cutoff, too. The AGASA data agree well with the beginning of the GZK cutoff at E leq 80 EeV, but show the excess of events at higher energies, the origin of which is not understood. The difference in the absolute fluxes measured by different detectors disappears after energy shift within the systematic errors of each experiment.
We study the extragalactic protons with universal spectrum, which is independent of mode of propagation, when distance between sources is less than the propagation lengths, such as energy attenuation length or diffusion length (for propagation in mag netic fields). The propagation features in this spectrum, the GZK cutoff, dip and bump, are studied with help of modification factor, which weakly depends on the generation spectrum index $gamma_g$. We argue that from the above features the dip is the most model-independent one. For the power-law generation spectrum with $gamma_g=2.7$ the dip is very well confirmed by the data of all existing detectors, which gives the strong evidence for extragalactic protons propagating through CMB. We develop the AGN model for origin of UHECR, which successfully explains the observed spectra up to $1times 10^{20}$ eV and transition from galactic to extragalactic cosmic rays. The calculated spectrum has the GZK cutoff, and the AGASA excess of events at $E gsim 1times 10^{20}$ eV needs another component, e.g. from superheavy dark matter. In case of weak extragalactic magnetic fields this model is consistent with small-angle clustering and observed correlation with BL Lacs.
341 - Rachid Ouyed 2007
The highest energy cosmic rays could be produced by drifts in magnetized, cylindrically collimated, sheared jets of powerful active galaxies (i.e. FR II radiogalaxies; radio loud quasars and high power BL Lacs). We show that in such scenarios proton synchrotron radiation can give rise to detectable photon fluxes at energies ranging from hundreds of keV to tens of MeV.
We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space -- unless the baryonic loading is much larger than previously anticipated.
The origin of ultra high energy cosmic rays promises to lead us to a deeper understanding of the structure of matter. This is possible through the study of particle collisions at center-of-mass energies in interactions far larger than anything possib le with the Large Hadron Collider, albeit at the substantial cost of no control over the sources and interaction sites. For the extreme energies we have to identify and understand the sources first, before trying to use them as physics laboratories. Here we describe the current stage of this exploration. The most promising contenders as sources are radio galaxies and gamma ray bursts. The sky distribution of observed events yields a hint favoring radio galaxies. Key in this quest are the intergalactic and galactic magnetic fields, whose strength and structure are not yet fully understood. Current data and statistics do not yet allow a final judgment. We outline how we may progress in the near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا