ﻻ يوجد ملخص باللغة العربية
In this paper, we will prove that, if the coefficient $g=g(t,y,z)$ of a BSDE is assumed to be continuous and linear growth in $(y,z)$, then the uniqueness of solution and continuous dependence with respect to $g$ and the terminal value $xi$ are equivalent.
In this note, we prove that if $g$ is uniformly continuous in $z$, uniformly with respect to $(oo,t)$ and independent of $y$, the solution to the backward stochastic differential equation (BSDE) with generator $g$ is unique.
This paper is devoted to solving a multidimensional backward stochastic differential equation with a general time interval, where the generator is uniformly continuous in $(y,z)$ non-uniformly with respect to $t$. By establishing some results on dete
We formulate a continuous version of the well known discrete hardcore (or independent set) model on a locally finite graph, parameterized by the so-called activity parameter $lambda > 0$. In this version, the state or spin value $x_u$ of any node $u$
This paper is devoted to obtaining a wellposedness result for multidimensional BSDEs with possibly unbounded random time horizon and driven by a general martingale in a filtration only assumed to satisfy the usual hypotheses, i.e. the filtration may
In this paper we prove that every random variable of the form $F(M_T)$ with $F:real^d toreal$ a Borelian map and $M$ a $d$-dimensional continuous Markov martingale with respect to a Markov filtration $mathcal{F}$ admits an exact integral representati