ترغب بنشر مسار تعليمي؟ اضغط هنا

Amplitude Analysis of High Statistics Results on $gammagammatopi^+pi^-$ and the Two Photon Width of Isoscalar States

31   0   0.0 ( 0 )
 نشر من قبل Michael R. Pennington
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform an Amplitude Analysis of the world published data on $gammagammatopi^+pi^-$ and $pi^0pi^0$. These are dominated in statistics by the recently published results from Belle on the charged pion channel. Nevertheless, having only limited angular information, a range of solutions remain possible. We present two solutions with $Gamma(f_0(980)togammagamma) = 0.42$ and 0.10 keV, and $Gamma(f_2(1270)togammagamma) = 3.14 pm 0.20$ and $3.82 pm 0.30$ keV, respectively: the former being the solution favoured by $chi^2$, the latter at the edge of acceptability. Models of the structure of the $f_0(980)$ predict two photon widths to be between 0.2 and 0.6 keV, depending on its composition as mainly ${bar K}K$, ${bar s}s$ or ${bar{qq}}qq$. Presently available data cannot yet distinguish unambiguously between these predictions. However, we show how forthcoming results on $gammagamma topi^0pi^0$ can not only discriminate between, but also refine, these classes of partial wave solutions.

قيم البحث

اقرأ أيضاً

The results of an amplitude analysis of the charmless three-body decay $B^+ rightarrow pi^+pi^+pi^-$, in which $C!P$-violation effects are taken into account, are reported. The analysis is based on a data sample corresponding to an integrated luminos ity of $3 text{fb}^{-1}$ of $pp$ collisions recorded with the LHCb detector. The most challenging aspect of the analysis is the description of the behaviour of the $pi^+ pi^-$ S-wave contribution, which is achieved by using three complementary approaches based on the isobar model, the K-matrix formalism, and a quasi-model-independent procedure. Additional resonant contributions for all three methods are described using a common isobar model, and include the $rho(770)^0$, $omega(782)$ and $rho(1450)^0$ resonances in the $pi^+pi^-$ P-wave, the $f_2(1270)$ resonance in the $pi^+pi^-$ D-wave, and the $rho_3(1690)^0$ resonance in the $pi^+pi^-$ F-wave. Significant $C!P$-violation effects are observed in both S- and D-waves, as well as in the interference between the S- and P-waves. The results from all three approaches agree and provide new insight into the dynamics and the origin of $C!P$-violation effects in $B^+ rightarrow pi^+pi^+pi^-$ decays.
Utilizing the data set corresponding to an integrated luminosity of $3.19$ fb$^{-1}$ collected by the BESIII detector at a center-of-mass energy of 4.178 GeV, we perform an amplitude analysis of the $D_s^+topi^+pi^-pi^+$ decay. The sample contains 13 ,797 candidate events with a signal purity of $sim$80%. We use a quasi-model-independent approach to measure the magnitude and phase of the $D_s^+topi^+pi^-pi^+$ decay, where the ${cal P}$ and ${cal D}$ waves are parameterized by a sum of three Breit-Wigner amplitudes $rho(770)^0$, $rho(1450)^0$, and $f_2(1270)$. The fit fractions of different decay channels are also reported.
The first flavor-tagged amplitude analysis of the decay D0 to the self-conjugate final state K+K-pi+pi- is presented. Data from the CLEO II.V, CLEO III, and CLEO-c detectors are used, from which around 3000 signal decays are selected. The three most significant amplitudes, which contribute to the model that best fits the data, are phirho0, K1(1270)+-K-+, and non-resonant K+K-pi+pi-. Separate amplitude analyses of D0 and D0-bar candidates indicate no CP violation among the amplitudes at the level of 5% to 30% depending on the mode. In addition, the sensitivity to the CP-violating parameter gamma/phi3 of a sample of 2000 B+ -> D0-tilde(K+K-pi+pi-)K+ decays, where D0-tilde is a D0 or D0-bar, collected at LHCb or a future flavor facility, is estimated to be (11.3 +/- 0.3) degrees using the favored model.
We present an amplitude analysis of the decay $D^{0} rightarrow K^{-} pi^{+} pi^{+} pi^{-}$ based on a data sample of 2.93 ${mbox{,fb}^{-1}}$ acquired by the BESIII detector at the $psi(3770)$ resonance. With a nearly background free sample of about 16000 events, we investigate the substructure of the decay and determine the relative fractions and the phases among the different intermediate processes. Our amplitude model includes the two-body decays $D^{0} rightarrow bar{K}^{*0}rho^{0}$, $D^{0} rightarrow K^{-}a_{1}^{+}(1260)$ and $D^{0} rightarrow K_{1}^{-}(1270)pi^{+}$, the three-body decays $D^{0} rightarrow bar{K}^{*0}pi^{+}pi^{-}$ and $D^{0} rightarrow K^{-}pi^{+}rho^{0}$, as well as the four-body decay $D^{0} rightarrow K^{-}pi^{+}pi^{+}pi^{-}$. The dominant intermediate process is $D^{0} rightarrow K^{-}a_{1}^{+}(1260)$, accounting for a fit fraction of $54.6%$.
The Dalitz plot analysis technique is used to study the resonant substructures of $B^{-} to D^{+} pi^{-} pi^{-}$ decays in a data sample corresponding to 3.0 ${rm fb}^{-1}$ of $pp$ collision data recorded by the LHCb experiment during 2011 and 2012. A model-independent analysis of the angular moments demonstrates the presence of resonances with spins 1, 2 and 3 at high $D^{+}pi^{-}$ mass. The data are fitted with an amplitude model composed of a quasi-model-independent function to describe the $D^{+}pi^{-}$ S-wave together with virtual contributions from the $D^{*}(2007)^{0}$ and $B^{*0}$ states, and components corresponding to the $D^{*}_{2}(2460)^{0}$, $D^{*}_{1}(2680)^{0}$, $D^{*}_{3}(2760)^{0}$ and $D^{*}_{2}(3000)^{0}$ resonances. The masses and widths of these resonances are determined together with the branching fractions for their production in $B^{-} to D^{+} pi^{-} pi^{-}$ decays. The $D^{+}pi^{-}$ S-wave has phase motion consistent with that expected due to the presence of the $D^{*}_{0}(2400)^{0}$ state. These results constitute the first observations of the $D^{*}_{3}(2760)^{0}$ and $D^{*}_{2}(3000)^{0}$ resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا