ﻻ يوجد ملخص باللغة العربية
In this note we summarize some of the properties found in [1], and its relation with [2]. We comment on the construction of the action of the 11D supermembrane with nontrivial central charges minimally immersed on a 7D toroidal manifold is obtained (MIM2).The transverse coordinates to the supermembrane are maps to a 4D Minkowski space-time. The action is invariant under additional symmetries in comparison to the supermembrane on a 11D Minkowski target space. The hamiltonian in the LCG is invariant under conformal transformations on the Riemann surface base manifold. The spectrum of the regularized hamiltonian is discrete with finite multiplicity. Its resolvent is compact. Susy is spontaneously broken, due to the topological central charge condition, to four supersymmetries in 4D, the vacuum belongs to an N=1 supermultiplet. When assuming the target-space to be an isotropic 7-tori, the potential does not contain any flat direction, it is stable on the moduli space of parameters. Moreover due to the discrete symmetries of the hamiltonian, there are only 7 possible minimal holomorphic immersions of the MIM2 on the 7-torus. When these symmetries are identified on the target space, it corresponds to compactify the MIM2 on a orbifold with G2 structure. Once the singularities are resolved it leads to the compactification of the MIM2 on a G2 manifold as shown in [2].
We show that the supermembrane theory compactified on a torus is invariant under T-duality. There are two different topological sectors of the compactified supermembrane (M2) classified according to a vanishing or nonvanishing second cohomology class
We obtain the Hamiltonian formulation of the 11D Supermembrane theory non-trivially compactified on a twice-punctured torus times a 9D Minkowski spacetime. It corresponds to a M2-brane formulated in 11D space with ten non compact dimensions. The crit
We analyse the measure of the regularized matrix model of the supersymmetric potential valleys, $Omega$, of the Hamiltonian of non zero modes of supermembrane theory. This is the same as the Hamiltonian of the BFSS matrix model. We find sufficient co
In this note we explicitly show how the generalization of the T-duality symmetry of the supermembrane theory compactified in M9xT2 can be reduced to a parabolic subgroup of SL(2,Z) that acts non-linearly on the moduli parameters and on the KK and win
We develop a classification of emph{minimally unbalanced} $3d~mathcal{N}=4$ quiver gauge theories. These gauge theories are important because the isometry group $G$ of their Coulomb branch contains a single factor, which is either a classical or an e