ﻻ يوجد ملخص باللغة العربية
Predictions and measurements of a multimode waveguide interferometer operating in a fibre coupled, ``dual-mode regime are reported. With a 1.32 micrometer source, a complete switching cycle of the output beam is produced by a 10.0 nanometer incremental change in the 8.0 micrometer width of the hollow planar mirror waveguide. This equates to a fringe spacing of $simlambda /130$. This is an order of magnitude smaller than previously reported results for this form of interferometer.
Hyperbolic Meta-Materials~(HMMs) are anisotropic materials with permittivity tensor that has both positive and negative eigenvalues. Here we report that by using a type II HMM as cladding material, a waveguide which only supports higher order modes c
A class of multiwavelength Fabry-Perot lasers is introduced where the spectrum is tailored through a non-periodic patterning of the cavity effective index. The cavity geometry is obtained using an inverse scattering approach and can be designed such
Dual-comb spectroscopy utilizes two sets of comb lines with slightly different comb-tooth-spacings, and optical spectral information is acquired by measuring the radio-frequency beat notes between the sets of comb lines. It holds the promise as a rea
We study the influences to the discrete soliton (DS) by introducing linearly long-range nonlocal interactions, which give rise to the off-diagonal elements of the linearly coupled matrix in the discrete nonlinear schrodinger equation to be filled by
Coupled mode theory (CMT) is a powerful framework for decomposing interactions between electromagnetic waves and scattering bodies into resonances and their couplings with power-carrying channels. It has widespread use in few-resonance, weakly couple