ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase diagrams of the metallic zigzag carbon nanotube

87   0   0.0 ( 0 )
 نشر من قبل Judith Bunder
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a metallic zigzag carbon nanotube by means of a Hubbard model which includes both on-site and nearest neighbour interactions. Assuming weak interactions, a renormalization group analysis of the equivalent two-leg ladder followed by bosonization and refermionization results in a Gross-Neveu model with an enlarged symmetry relative to the original Hamiltonian. For the undoped case the symmetry of the Gross-Neveu model is SO(8), but for the doped case the particle-hole symmetry is broken and the symmetry reduces to SO(6). Four ground state phases are found in the undoped carbon nanotube with repulsive interactions, a d-wave Mott insulator, an s-wave Mott insulator, a p-density wave and a charge density wave. The doped case has two ground state phases, a d-wave superconductor and a phase where a p-density wave and a charge density wave co-exist. We also explore the global phase diagram with a general interaction profile and find several additional states, including a chiral current phase where current flows around the nanotube along the zigzag bonds.

قيم البحث

اقرأ أيضاً

We revisit correlation effects in doped metallic zigzag carbon nanotubes by using both the one-loop renormalization group and non-perturbative bosonization techniques. Note that, if a nanotube is placed near a conducting plate, the long-range Coulomb interactions are screened and the resulting short-range interactions can be modelled by on-site and nearest-neighbor repulsive interactions $U$, $V$ and $V_{perp}$ respectively. Using both analytic and numeric means, we determine the phase diagram of the ground states. For $U/t<0.5$ ($t$ is the hopping strength), dynamical symmetry enlargement occurs and the low-energy excitations are described by the SO(6) Gross-Neveu model. However, for realistic material parameters $U/t sim mathcal{O}(1)$, the charge sector decouples but there remains an enlarged SO(4) symmetry in the spin sector.
Motivated by the possibility of an intermediate U(1) quantum spin liquid phase in out-of-plane magnetic fields and enhanced magnetic fluctuations in exfoliated {alpha}-RuCl3 flakes, we study magneto-Raman spectra of exfoliated multilayer {alpha}-RuCl 3 in out-of-plane magnetic fields of -6 T to 6 T at temperatures of 670 mK - 4 K. While the literature currently suggests that bulk {alpha}-RuCl3 is in an antiferromagnetic zigzag phase with R3bar symmetry at low temperature, we do not observe R3bar symmetry in exfoliated {alpha}-RuCl3 at low temperatures. While we saw no magnetic field driven transitions, the Raman modes exhibit unexpected stochastic shifts in response to applied magnetic field that are above the uncertainties inferred from Bayesian analysis. These stochastic shifts are consistent with the emergence of magnetostrictive interactions in exfoliated {alpha}-RuCl3.
The effect of next-nearest-neighbor hopping $t_{2}$ on the ground-state phase diagram of the one-dimensional Kondo lattice is studied with density-matrix renormalization-group techniques and by comparing with the phase diagram of the classical-spin v ariant of the same model. For a finite $t_{2}$, i.e., for a zigzag-ladder geometry, indirect antiferromagnetic interactions between the localized spins are geometrically frustrated. We demonstrate that $t_{2}$ at the same time triggers several magnetic phases which are absent in the model with nearest-neighbor hopping only. For strong $J$, we find a transition from antiferromagnetic to incommensurate magnetic short-range order, which can be understood entirely in the classical-spin picture. For weaker $J$, a spin-dimerized phase emerges, which spontaneously breaks the discrete translation symmetry. The phase is not accessible to perturbative means but is explained, on a qualitative level, by the classical-spin model as well. Spin dimerization alleviates magnetic frustration and is interpreted as a key to understand the emergence of quasi-long-range spiral magnetic order which is found at weaker couplings. The phase diagram at weak $J$, with gapless quasi-long-range order on top of the two-fold degenerate spin-dimerized ground state, competing with a nondegenerate phase with gapped spin (and charge) excitations, is unconventional and eludes an effective low-energy spin-only theory.
We study the Kondo effect in a CNT(left lead)-CNT(QD)-CNT(right lead) structure. Here CNT is a single-wall metallic carbon nanotube, for which 1) the valence and conduction bands of electrons with zero orbital angular momentum ($m=0$) coalesc at the two valley points ${bf{K}}$ and ${bf{K}}$ of the first Brillouin zone and 2) the energy spectrum of electrons with $m e 0$ has a gap whose size is proportional to $|m|$. Following adsorption of hydrogen atoms and application of an appropriately designed gate potential, electron energy levels in the CNT(QD) are tunable to have: 1) two-fold spin degeneracy; 2) two-fold isospin (valley) degeneracy; 3) three-fold orbital degeneracy $m=0,pm1$. As a result, an SU(12) Kondo effect is realized with remarkably high Kondo temperature. Unlike the SU(2) case, the low temperature conductance and magnetic susceptibility have a peak at finite temperature. Moreover, the magnetic susceptibilities for parallel and perpendicular magnetic fields (WRT the tube axis) display anisotropy with a universal ratio $chi_{rm{imp}}^parallel / chi_{rm{imp}}^perp=eta$ that depends only on the electrons orbital and spin $g$ factors.
At zero magnetic field, a series of five phase transitions occur in Co3V2O8. The Neel temperature, TN=11.4 K, is followed by four additional phase changes at T1=8.9 K, T2=7.0 K, T3=6.9 K, and T4=6.2 K. The different phases are distinguished by the co mmensurability of the b-component of its spin density wave vector. We investigate the stability of these various phases under magnetic fields through dielectric constant and magnetic susceptibility anomalies. The field-temperature phase diagram of Co3V2O8 is completely resolved. The complexity of the phase diagram results from the competition of different magnetic states with almost equal ground state energies due to competing exchange interactions and frustration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا