ترغب بنشر مسار تعليمي؟ اضغط هنا

New Dissipation Relaxation Phenomenon in Oscillating Solid He-4

195   0   0.0 ( 0 )
 نشر من قبل Harry Kojima
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the first observations on the time-dependent dissipation when the drive level of a torsional oscillator containing solid He-4 is abruptly changed. The relaxation of dissipation in solid He-4 shows rich dynamical behavior including exponential and logarithmic time-dependent decays, hysteresis, and memory effects.

قيم البحث

اقرأ أيضاً

120 - Y. Aoki , J.C. Graves , H. Kojima 2007
The non-classical rotational inertia fraction of the identical cylindrical solid $^4$He below 300 mK is studied at 496 and 1173 Hz by a double resonance torsional oscillator. Below 35 mK, the fraction is the same at sufficiently low rim velocities. A bove 35 mK, the fraction is greater for the higher than the lower mode. The dissipation peak of the lower mode occurs at a temperature $sim$ 4 mK lower than that of the higher mode. The drive dependence of the two modes shows that the reduction of the fraction is characterized by critical velocity, textit{not} amplitude nor acceleration.
The low temperature phase diagram of $^4$He adsorbed on a single graphene sheet is studied by computer simulation of a system comprising nearly thousand helium atoms. In the first layer, two commensurate solid phases are observed, with fillings 1/3 a nd 7/16 respectively, separated by a domain wall phase, as well as an incommensurate crystal at higher coverage. No evidence of a thermodynamically stable superfliuid phase is found for the first adlayer. Second layer promotion occurs at a coverage of 0.111(4) $AA^{-2}$. In the second layer two phases are observed, namely a superfluid and an incommensurate solid, with no commensurate solid intervening between these two phases. The computed phase diagram closely resembles that predicted for helium on graphite.
99 - J. Gao , W. Guo , S. Yui 2018
There are two commonly discussed forms of quantum turbulence in superfluid $^4$He above 1K: in one there is a random tangle of quantizes vortex lines, existing in the presence of a non-turbulent normal fluid; in the second there is a coupled turbulen t motion of the two fluids, often exhibiting quasi-classical characteristics on scales larger than the separation between the quantized vortex lines in the superfluid component. The decay of vortex line density, $L$, in the former case is often described by the equation $dL/dt=-chi_2 (kappa/2pi)L^2$, where $kappa$ is the quantum of circulation, and $chi_2$ is a dimensionless parameter of order unity. The decay of total turbulent energy, $E$, in the second case is often characterized by an effective kinematic viscosity, $ u$, such that $dE/dt=- u kappa^2 L^2$. We present new values of $chi_2$ derived from numerical simulations and from experiment, which we compare with those derived from a theory developed by Vinen and Niemela. We summarise what is presently known about the values of $ u$ from experiment, and we present a brief introductory discussion of the relationship between $chi_2$ and $ u$, leaving a more detailed discussion to a later paper.
The ground state of $^4$He confined in a system with the topology of a cylinder can display properties of a solid, superfluid and liquid crystal. This phase, which we call compactified supersolid (CSS), originates from wrapping the basal planes of th e bulk hcp solid into concentric cylindrical shells, with several central shells exhibiting superfluidity along the axial direction. Its main feature is the presence of a topological defect which can be viewed as a disclination with Frank index $n=1$ observed in liquid crystals, and which, in addition, has a superfluid core. The CSS as well as its transition to an insulating compactified solid with a very wide hysteresis loop are found by ab initio Monte Carlo simulations. A simple analytical model captures qualitatively correctly the main property of the CSS -- a gradual decrease of the superfluid response with increasing pressure.
We report measurements of elastic moduli of hcp solid $^4$He down to 15 mK when the samples are rotated unidirectionally. Recent investigations have revealed that the elastic behavior of solid $^4$He is dominated by gliding of dislocations and pinnin g of them by $^3$He impurities, which move in the solid like Bloch waves (impuritons). Motivated by the recent controversy of torsional oscillator studies, we have preformed direct measurements of shear and Youngs moduli of annular solid $^4$He using pairs of quarter-circle shape piezoelectric transducers (PZTs) while the whole apparatus is rotated with angular velocity $Omega$ up to 4 rad/s. We have found that shear modulus $mu$ is suppressed by rotation below 80 mK, when shear strain applied by PZT exceeds a critical value, above which $mu$ decreases because the shear strain unbinds dislocations from $^3$He impurities. The rotation - induced decrement of $mu$ at $Omega = 4$ rad/s is about 14.7 (12.3) % of the total change of temperature dependent $mu$ for solid samples of pressure 3.6 (5.4) MPa. The decrements indicate that the probability of pinning of $^3$He on dislocation segment, $G$, decreases by several orders of magnitude. We propose that the motion of $^3$He impuritons under rotation becomes strongly anisotropic by the Coriolis force, resulting a decrease in $G$ for dislocation lines aligning parallel to the rotation axis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا