ترغب بنشر مسار تعليمي؟ اضغط هنا

The Origin and Kinematics of Cold Gas in Galactic Winds: Insight from Numerical Simulations

53   0   0.0 ( 0 )
 نشر من قبل Mordecai-Mark Mac Low
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Akimi Fujita




اسأل ChatGPT حول البحث

We study the origin of Na I absorbing gas in ultraluminous infrared galaxies motivated by the recent observations by Martin of extremely superthermal linewidths in this cool gas. We model the effects of repeated supernova explosions driving supershells in the central regions of molecular disks with M_d=10^10 M_sun, using cylindrically symmetric gas dynamical simulations run with ZEUS-3D. The shocked swept-up shells quickly cool and fragment by Rayleigh-Taylor instability as they accelerate out of the dense, stratified disks. The numerical resolution of the cooling and compression at the shock fronts determines the peak shell density, and so the speed of Rayleigh-Taylor fragmentation. We identify cooled shells and shell fragments as Na I absorbing gas and study its kinematics. We find that simulations with a numerical resolution of le 0.2 pc produce multiple Rayleigh-Taylor fragmented shells in a given line of sight. We suggest that the observed wide Na I absorption lines, <v> = 320 pm 120 km s^-1 are produced by these multiple fragmented shells traveling at different velocities. We also suggest that some shell fragments can be accelerated above the observed average terminal velocity of 750 km s^-1 by the same energy-driven wind with an instantaneous starburst of sim 10^9 M_sun. The bulk of mass is traveling with the observed average shell velocity 330 pm 100 km s^-1. Our results show that an energy-driven bubble causing Rayleigh-Taylor instabilities can explain the kinematics of cool gas seen in the Na I observations without invoking additional physics relying primarily on momentum conservation, such as entrainment of gas by Kelvin-Helmholtz instabilities, ram pressure driving of cold clouds by a hot wind, or radiation pressure acting on dust. (abridged)

قيم البحث

اقرأ أيضاً

72 - W. Kapferer 2005
We present an investigation of the metal enrichment of the intra-cluster medium (ICM) by galactic winds and merger-driven starbursts. We use combined N-body/hydrodynamic simulations with a semi-numerical galaxy formation model. The mass loss by galac tic winds is obtained by calculating transonic solutions of steady state outflows, driven by thermal, cosmic ray and MHD wave pressure. The inhomogeneities in the metal distribution caused by these processes are an ideal tool to reveal the dynamical state of a galaxy cluster. We present surface brightness, X-ray emission weighted temperature and metal maps of our model clusters as they would be observed by X-ray telescopes like XMM-Newton. We show that X-ray weighted metal maps distinguish between pre- or post-merger galaxy clusters by comparing the metallicity distribution with the galaxy-density distribution: pre-mergers have a metallicity gap between the subclusters, post-mergers a high metallicity between subclusters. We apply our approach to two observed galaxy clusters, Abell 3528 and Abell 3921, to show whether they are pre- or post-merging systems. The survival time of the inhomogeneities in the metallicity distribution found in our simulations is up to several Gyr. We show that galactic winds and merger-driven starbursts enrich the ICM very efficiently after z=1 in the central (~ 3 Mpc radius) region of a galaxy cluster.
Observations of dwarf galaxies suggest the presence of large-scale magnetic fields. However the size and slow rotation of these galaxies appear insufficient to support a mean-field dynamo action to excite such fields. Here we suggest a new mechanism to explain large-scale magnetic fields in galaxies that are too small to support mean-field dynamo action. The key idea is that we do not identify large-scale and mean magnetic fields. In our scenario the the magnetic structures originate from a small-scale dynamo which produces small-scale magnetic field in the galactic disc and a galactic wind that transports this field into the galactic halo where the large turbulent diffusion increases the scale and order of the field. As a result, the magnetic field becomes large-scale; however its mean value remains vanishing in a strict sense. We verify the idea by numerical modelling of two distinct simplified configurations, a thin disc model using the no-$z$ approximation, and an axisymmetric model using cylindrical $r,z$ coordinates. Each of these allows reduction of the problem to two spatial dimensions. Taken together, the models support the proposition that the general trends will persist in a fully 3D model. We demonstrate that a pronounced large-scale pattern can develop in the galactic halo for a wide choice of the dynamo governing parameters. We believe that our mechanism can be relevant to explaining the presence of the fields observed in the halos of dwarf galaxies. We emphasize that detailed modelling of the proposed scenario needs 3D simulations, and adjustment to the specific dynamo governing parameters of dwarf galaxies.
In this study, we analyze giant Galactic spurs seen in both radio and X-ray all-sky maps to reveal their origins. We discuss two types of giant spurs: one is the brightest diffuse emission near the maps center, which is likely to be related to Fermi bubbles (NPSs/SPSs, north/south polar spurs, respectively), and the other is weaker spurs that coincide positionally with local spiral arms in our Galaxy (LAS, local arm spur). Our analysis finds that the X-ray emissions, not only from the NPS but from the SPS are closer to the Galactic center by ~5 deg compared with the corresponding radio emission. Furthermore, larger offsets of 10-20 deg are observed in the LASs; however, they are attributed to different physical origins. Moreover, the temperature of the X-ray emission is kT ~ 0.2 keV for the LAS, which is systematically lower than those of the NPS and SPS (kT ~ 0.3 keV) but consistent with the typical temperature of Galactic halo gas. We argue that the radio/X-ray offset and the slightly higher temperature of the NPS/SPS X-ray gas are due to the shock compression/heating of halo gas during a significant Galactic explosion in the past, whereas the enhanced X-ray emission from the LAS may be due to the weak condensation of halo gas in the arm potential or star formation activity without shock heating.
108 - Yu Qiu 2020
Galaxy clusters are the most massive collapsed structures in the universe whose potential wells are filled with hot, X-ray emitting intracluster medium. Observations however show that a significant number of clusters (the so-called cool-core clusters ) also contain large amounts of cold gas in their centres, some of which is in the form of spatially extended filaments spanning scales of tens of kiloparsecs. These findings have raised questions about the origin of the cold gas, as well as its relationship with the central active galactic nucleus (AGN), whose feedback has been established as a ubiquitous feature in such galaxy clusters. Here we report a radiation hydrodynamic simulation of AGN feedback in a galaxy cluster, in which cold filaments form from the warm, AGN-driven outflows with temperatures between $10^4$ and $10^7$ K as they rise in the cluster core. Our analysis reveals a new mechanism, which, through the combination of radiative cooling and ram pressure, naturally promotes outflows whose cooling time is shorter than their rising time, giving birth to spatially extended cold gas filaments. Our results strongly suggest that the formation of cold gas and AGN feedback in galaxy clusters are inextricably linked and shed light on how AGN feedback couples to the intracluster medium.
We study the z=0 gas kinematics, morphology, and angular momentum content of isolated galaxies in a suite of cosmological zoom-in simulations from the FIRE project spanning $M_{star}=10^{6-11}M_{odot}$. Gas becomes increasingly rotationally supported with increasing galaxy mass. In the lowest-mass galaxies ($M_{star}<10^{8}M_{odot}$), gas fails to form a morphological disk and is primarily dispersion and pressure supported. At intermediate masses ($M_{star}=10^{8-10}M_{odot}$), galaxies display a wide range of gas kinematics and morphologies, from thin, rotating disks, to irregular spheroids with negligible net rotation. All the high-mass ($M_{star}=10^{10-11}M_{odot}$) galaxies form rotationally supported gas disks. Many of the halos whose galaxies fail to form disks harbor high angular momentum gas in their circumgalactic medium. The ratio of the specific angular momentum of gas in the central galaxy to that of the dark-matter halo increases significantly with galaxy mass, from $j_{rm gas}/j_{rm DM}sim0.1$ at $M_{star}=10^{6-7}M_{odot}$ to $j_{rm gas}/j_{rm DM}sim2$ at $M_{star}=10^{10-11}M_{odot}$. The reduced rotational support in the lowest-mass galaxies owes to (a) stellar feedback and the UV background suppressing the accretion of high-angular momentum gas at late times, and (b) stellar feedback driving large non-circular gas motions. We broadly reproduce the observed scaling relations between galaxy mass, gas rotation velocity, size, and angular momentum, but may somewhat underpredict the incidence of disky, high-angular momentum galaxies at the lowest observed masses ($M_{star}=(10^{6}-2times10^{7})M_{odot}$). In our simulations, stars are uniformly less rotationally supported than gas. The common assumption that stars follow the same rotation curve as gas thus substantially overestimates galaxies stellar angular momentum, particularly at low masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا