ترغب بنشر مسار تعليمي؟ اضغط هنا

Space-like Separation in a Bell Test assuming Gravitationally Induced Collapses

51   0   0.0 ( 0 )
 نشر من قبل Daniel Salart Subils
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a Bell experiment with space-like separation assuming that the measurement time is related to gravity-induced state reduction. Two energy-time entangled photons are sent through optical fibers and directed into unbalanced interferometers at two receiving stations separated by 18 km. At each station, the detection of a photon triggers the displacement of a macroscopic mass. The timing ensures space-like separation from the moment a photon enters its interferometer until the mass has moved. 2-photon interference fringes with a visibility of up to 90.5% are obtained, leading to a violation of Bell inequality.


قيم البحث

اقرأ أيضاً

334 - Peter Bierhorst 2013
Recent experiments have reached detection efficiencies sufficient to close the detection loophole with photons. Both experiments ran multiple successive trials in fixed measurement configurations, rather than randomly re-setting the measurement confi gurations before each measurement trial. This opens a new potential loophole for a local hidden variable theory. The loophole invalidates one proposed method of statistical analysis of the experimental results, as demonstrated in this note. Therefore a different analysis will be necessary to definitively assert that these experiments are subject only to the locality loophole.
Over the past few decades, experimental tests of Bell-type inequalities have been at the forefront of understanding quantum mechanics and its implications. These strong bounds on specific measurements on a physical system originate from some of the m ost fundamental concepts of classical physics - in particular that properties of an object are well defined independent of measurements (realism) and only affected by local interactions (locality). The violation of these bounds unambiguously shows that the measured system does not behave classically, void of any assumption on the validity of quantum theory. It has also found applications in quantum technologies for certifying the suitability of devices for generating quantum randomness, distributing secret keys and for quantum computing. Here we report on the violation of a Bell inequality involving a massive, macroscopic mechanical system. We create light-matter entanglement between the vibrational motion of two silicon optomechanical oscillators, each comprising approx. $10^{10}$ atoms, and two optical modes. This state allows us to violate a Bell inequality by more than 4 standard deviations, directly confirming the non-classical behavior of our optomechanical system under the fair sampling assumption.
We report on a complete free-space field implementation of a modified Ekert91 protocol for quantum key distribution using entangled photon pairs. For each photon pair we perform a random choice between key generation and a Bell inequality. The amount of violation is used to determine the possible knowledge of an eavesdropper to ensure security of the distributed final key.
We propose and analyze a novel interactive protocol for demonstrating quantum computational advantage, which is efficiently classically verifiable. Our protocol relies upon the cryptographic hardness of trapdoor claw-free functions (TCFs). Through a surprising connection to Bells inequality, our protocol avoids the need for an adaptive hardcore bit, with essentially no increase in the quantum circuit complexity and no extra cryptographic assumptions. Crucially, this expands the set of compatible TCFs, and we propose two new constructions: one based upon the decisional Diffie-Hellman problem and the other based upon Rabins function, $x^2 bmod N$. We also describe two unique features of our interactive protocol: (i) it allows one to discard so-called garbage bits, thereby removing the need for reversibility in the quantum circuits, and (ii) there exists a natural post-selection scheme, which significantly reduces the fidelity needed to demonstrate quantum advantage. Finally, we design several efficient circuits for $x^2 bmod N$ and describe a blueprint for their implementation on a Rydberg-atom-based quantum computer.
353 - G. Garbarino 2009
We discuss the problem of finding the most favorable conditions for closing the detection loophole in a test of local realism with a Bell inequality. For a generic non-maximally entangled two-qubit state and two alternative measurement bases we apply Hardys proof of non-locality without inequality and derive an Eberhard-like inequality. For an infinity of non-maximally entangled states we find that it is possible to refute local realism by requiring perfect detection efficiency for only one of the two measurements: the test is free from the detection loophole for any value of the detection efficiency corresponding to the other measurement. The maximum tolerable noise in a loophole-free test is also evaluated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا