ترغب بنشر مسار تعليمي؟ اضغط هنا

Monodromy and Tangential Center Problems

54   0   0.0 ( 0 )
 نشر من قبل Pavao Marde\\v{s}i\\'c
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider families of Abelian integrals arising from perturbations of planar Hamiltonian systems. The tangential center focus problem asks for the conditions under which these integrals vanish identically. The problem is closely related to the monodromy problem, which asks when the monodromy of a vanishing cycle generates the whole homology of the level curves of the Hamiltonian. We solve both these questions for the case when the Hamiltonian is hyperelliptic. As a side-product, we solve the corresponding problems for the 0-dimensional Abelian integrals defined by Gavrilov and Movasati.

قيم البحث

اقرأ أيضاً

We consider integrable Hamiltonian systems in three degrees of freedom near an elliptic equilibrium in 1:1:-2 resonance. The integrability originates from averaging along the periodic motion of the quadratic part and an imposed rotational symmetry ab out the vertical axis. Introducing a detuning parameter we find a rich bifurcation diagram, containing three parabolas of Hamiltonian Hopf bifurcations that join at the origin. We describe the monodromy of the resulting ramified 3-torus bundle as variation of the detuning parameter lets the system pass through 1:1:-2 resonance.
We study the $mathcal{F}$-center problem with outliers: given a metric space $(X,d)$, a general down-closed family $mathcal{F}$ of subsets of $X$, and a parameter $m$, we need to locate a subset $Sin mathcal{F}$ of centers such that the maximum dista nce among the closest $m$ points in $X$ to $S$ is minimized. Our main result is a dichotomy theorem. Colloquially, we prove that there is an efficient $3$-approximation for the $mathcal{F}$-center problem with outliers if and only if we can efficiently optimize a poly-bounded linear function over $mathcal{F}$ subject to a partition constraint. One concrete upshot of our result is a polynomial time $3$-approximation for the knapsack center problem with outliers for which no (true) approximation algorithm was known.
121 - Lin Wang , Yujun Zhu 2015
Let $f$ be a partially hyperbolic diffeomorphism on a closed (i.e., compact and boundaryless) Riemannian manifold $M$ with a uniformly compact center foliation $mathcal{W}^{c}$. The relationship among topological entropy $h(f)$, entropy of the restri ction of $f$ on the center foliation $h(f, mathcal{W}^{c})$ and the growth rate of periodic center leaves $p^{c}(f)$ is investigated. It is first shown that if a compact locally maximal invariant center set $Lambda$ is center topologically mixing then $f|_{Lambda}$ has the center specification property, i.e., any specification with a large spacing can be center shadowed by a periodic center leaf with a fine precision. Applying the center spectral decomposition and the center specification property, we show that $ h(f)leq h(f,mathcal{W}^{c})+p^{c}(f)$. Moreover, if the center foliation $mathcal{W}^{c}$ is of dimension one, we obtain an equality $h(f)= p^{c}(f)$.
The tangential condition was introduced in [Hanke et al., 95] as a sufficient condition for convergence of the Landweber iteration for solving ill-posed problems. In this paper we present a series of time dependent benchmark inverse problems for which we can verify this condition.
In recent years, the capacitated center problems have attracted a lot of research interest. Given a set of vertices $V$, we want to find a subset of vertices $S$, called centers, such that the maximum cluster radius is minimized. Moreover, each cente r in $S$ should satisfy some capacity constraint, which could be an upper or lower bound on the number of vertices it can serve. Capacitated $k$-center problems with one-sided bounds (upper or lower) have been well studied in previous work, and a constant factor approximation was obtained. We are the first to study the capacitated center problem with both capacity lower and upper bounds (with or without outliers). We assume each vertex has a uniform lower bound and a non-uniform upper bound. For the case of opening exactly $k$ centers, we note that a generalization of a recent LP approach can achieve constant factor approximation algorithms for our problems. Our main contribution is a simple combinatorial algorithm for the case where there is no cardinality constraint on the number of open centers. Our combinatorial algorithm is simpler and achieves better constant approximation factor compared to the LP approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا