ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous expansion and phonon damping due to the Co spin-state transition in RCoO_3 with R = La, Pr, Nd and Eu

44   0   0.0 ( 0 )
 نشر من قبل Thomas Lorenz
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a combined study of the thermal expansion and the thermal conductivity of the perovskite series RCoO_3 with R = La, Nd, Pr and Eu. The well-known spin-state transition in LaCoO_3 is strongly affected by the exchange of the R ions due to their different ionic radii, i.e. chemical pressure. This can be monitored in detail by measurements of the thermal expansion, which is a highly sensitive probe for detecting spin-state transitions. The Co ions in the higher spin state act as additional scattering centers for phonons, therefore suppressing the phonon thermal conductivity. Based on the analysis of the interplay between spin-state transition and heat transport, we present a quantitative model of the thermal conductivity for the entire series. In PrCoO_3, an additional scattering effect is active at low temperatures. This effect arises from the crystal field splitting of the 4f multiplet, which allows for resonant scattering of phonons between the various 4f levels.

قيم البحث

اقرأ أيضاً

132 - K. Berggold , T. Lorenz , J. Baier 2005
We have studied the thermal conductivity $kappa$ on single crystalline samples of the antiferromagnetic monolayer cuprates R$_2$CuO$_4$ with R = La, Pr, Nd, Sm, Eu, and Gd. For a heat current within the CuO$_2$ planes, i.e. for $kappa_{ab}$ we find h igh-temperature anomalies around 250 K in all samples. In contrast, the thermal conductivity $kappa_c$ perpendicular to the CuO$_2$ planes, which we measured for R = La, Pr, and Gd, shows a conventional temperature dependence as expected for a purely phononic thermal conductivity. This qualitative anisotropy of $kappa_i$ and the anomalous temperature dependence of $kappa_{ab}$ give evidence for a significant magnetic contribution $kappa_{mag}$ to the heat transport within the CuO$_2$ planes. Our results suggest, that a large magnetic contribution to the heat current is a common feature of single-layer cuprates. We find that $kappa_{mag}$ is hardly affected by structural instabilities, whereas already weak charge carrier doping causes a strong suppression of $kappa_{mag}$.
We have investigated the temperature dependence of the magnetic susceptibility $chi(T)$ of rare-earth cobaltites RCoO$_3$ (R= La, Pr, Nd, Sm, Eu) in the temperature range $4.2-300$ K and also the influence of hydrostatic pressure up to 2 kbar on thei r susceptibility at fixed temperatures $T=78 $ and 300 K. The specific dependence $chi(T)$ observed in LaCoO$_3$ and the anomalously large pressure effect (d ln $chi$/d$Psim -100$ Mbar$^{-1}$ for $T = 78$ K) are analyzed in the framework of a two-level model with energy levels difference $Delta$. The ground state of the system is assumed to be nonmagnetic with the zero spin of Co$^{3+}$ ions, and magnetism at a finite temperature is determined by the excited magnetic spin state. The results of the analysis, supplemented by theoretical calculations of the electronic structure of LaCoO$_3$, indicate a significant increase in $Delta$ with a decrease in the unit cell volume under the hydrostatic pressure. In the series of RCoO$_3$ (R= Pr, Nd, Sm, Eu) compounds, the volume of crystal cell decreases monotonically due to a decrease in the radius of R$^{3+}$ ions. This leads to an increase in the relative energy $Delta$ of the excited state (the chemical pressure effect), which manifests itself in a decrease in the contribution of cobalt ions to the magnetic susceptibility at a fixed temperature, and also in a decrease in the hydrostatic pressure effect on the susceptibility of RCoO$_3$ compounds, which we have observed at $T=300$ K.
We present a study of the structure, the electric resistivity, the magnetic susceptibility, and the thermal expansion of La$_{1-x}$Eu$_x$CoO$_3$. LaCoO$_3$ shows a temperature-induced spin-state transition around 100 K and a metal-insulator transitio n around 500 K. Partial substitution of La$^{3+}$ by the smaller Eu$^{3+}$ causes chemical pressure and leads to a drastic increase of the spin gap from about 190 K in LaCoO$_3$ to about 2000 K in EuCoO$_3$, so that the spin-state transition is shifted to much higher temperatures. A combined analysis of thermal expansion and susceptibility gives evidence that the spin-state transition has to be attributed to a population of an intermediate-spin state with orbital order for $x<0.5$ and without orbital order for larger $x$. In contrast to the spin-state transition, the metal-insulator transition is shifted only moderately to higher temperatures with increasing Eu content, showing that the metal-insulator transition occurs independently from the spin-state distribution of the Co$^{3+}$ ions. Around the metal-insulator transition the magnetic susceptibility shows a similar increase for all $x$ and approaches a doping-independent value around 1000 K indicating that well above the metal-insulator transition the same spin state is approached for all $x$.
The tetragonal-to-orthorhombic structural phase transition (SPT) in LaFeAsO (La-1111) and SmFeAsO (Sm-1111) single crystals measured by high resolution x-ray diffraction is found to be sharp while the RFeAsO (R=La, Nd, Pr, Sm) polycrystalline samples show a broad continuous SPT. Comparing the polycrystalline and the single crystal 1111 samples, the critical exponents of the SPT are found to be the same while the correlation length critical exponents are found to be very different. These results imply that the lattice fluctuations in 1111 systems change in samples with different surface to volume ratio that is assigned to the relieve of the temperature dependent superlattice misfit strain between active iron layers and the spacer layers in 1111 systems. This phenomenon that is missing in the AFe2As2 (A=Ca, Sr, Ba) 122 systems, with the same electronic structure but different for the thickness and the elastic constant of the spacer layers, is related with the different maximum superconducting transition temperature in the 1111 (55 K) versus 122 (35 K) systems and implies the surface reconstruction in 1111 single crystals.
We investigate the low temperature structural and physical properties of the trilayer nickelates R4Ni3O10 (R = La, Pr and Nd) using resistivity, thermopower, thermal conductivity, specific heat, high-resolution synchrotron powder X-ray diffraction an d thermal expansion experiments. We show that all three compounds crystallize with a monoclinic symmetry, and undergo a metal-to-metal (MMT) transition at 135 K (La), 156 K (Pr) and 160 K (Nd). At MMT, the lattice parameters show distinct anomalies; however, without any lowering of the lattice symmetry. Unambiguous signatures of MMT are also seen in magnetic and thermal measurements, which suggest a strong coupling between the electronic, magnetic and structural degrees of freedom in these nickelates. Analysis of thermal expansion yields hydrostatic pressure dependence of MMT in close agreement with experiments. We show that the 9-fold coordinated Pr ions in the rocksalt (RS) layers have a crystal field (CF) split doublet ground state with possible antiferromagnetic ordering at 5 K. The Pr ions located in the perovskite block (PB) layers with 12-fold coordination, however, exhibit a non-magnetic singlet ground state. The CF ground state of Nd in both RS and PB layers is a Kramers doublet. Heat capacity of R = Nd shows a Schottky-like anomaly near35 K, and an upturn below T = 10 K suggesting the presence of short-range correlations between the Nd moments. However, no signs of long-range ordering could be found down to 2 K despite a sizeable theta_p ~ -40 K. The strongly suppressed magnetic long-range ordering in both R = Pr and Nd suggests the presence of strong magnetic frustration in these compounds. The low-temperature resistivity shows a T^0.5 dependence. No evidence for the heavy fermion behavior could be found in any of the three compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا