ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical extraction of de Haas - van Alphen frequencies from calculated band energies

65   0   0.0 ( 0 )
 نشر من قبل Patrick Rourke
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new algorithm for extracting de Haas-van Alphen frequencies and effective masses from calculated band energies is presented. The algorithm creates an interpolated k-space super cell, which is broken into slices perpendicular to the desired magnetic field direction. Fermi surface orbits are located within each slice, and de Haas-van Alphen frequencies and effective masses are calculated. Orbits are then matched across slices, and extremal orbits determined. This technique has been successful in locating extremal orbits not previously noticed in the complicated topology of existing UPt3 band-structure data; these new orbits agree with experimental de Haas-van Alphen measurements on this material, and solidify the case for a fully-itinerant model of UPt3.

قيم البحث

اقرأ أيضاً

160 - Kejie Fang , Shanhui Fan 2013
Based on the recently proposed concept of effective gauge potential and magnetic field for photons, we numerically demonstrate a photonic de Haas-van Alphen effect. We show that in a dynamically modulated photonic resonator lattice exhibiting an effe ct magnetic field, the trajectories of the light beam at a given frequency have the same shape as the constant energy contour for the photonic band structure of the lattice in the absence of the effective magnetic field.
We have completely determined the Fermi surface in KFe$_2$As$_2$ via de Haas-van Alphen (dHvA) measurements. Fundamental frequencies $epsilon$, $alpha$, $zeta$, and $beta$ are observed in KFe$_2$As$_2$. The first one is attributed to a hole cylinder near the X point of the Brillouin zone, while the others to hole cylinders at the $Gamma$ point. We also observe magnetic breakdown frequencies between $alpha$ and $zeta$ and suggest a plausible explanation for them. The experimental frequencies show deviations from frequencies predicted by band structure calculations. Large effective masses up to 19 $m_e$ for $B parallel c$ have been found, $m_e$ being the free electron mass. The carrier number and Sommerfeld coefficient of the specific heat are estimated to be 1.01 -- 1.03 holes per formula unit and 82 -- 94 mJmol$^{-1}$K$^{-2}$, respectively, which are consistent with the chemical stoichiometry and a direct measure of 93 mJmol$^{-1}$K$^{-2}$ [H. Fukazawa textit{et al}., J. Phys. Soc. Jpn. textbf{80SA}, SA118 (2011)]. The Sommerfeld coefficient is about 9 times enhanced over a band value, suggesting the importance of low-energy spin and/or orbital fluctuations, and places KFe$_2$As$_2$ among strongly correlated metals. We have also performed dHvA measurements on Ba$_{0.07}$K$_{0.93}$Fe$_2$As$_2$ and have observed the $alpha$ and $beta$ frequencies.
We report the magneto-transport properties of CaAl$_4$ single crystals with $C2/m$ structure at low temperature. CaAl$_4$ exhibits large unsaturated magnetoresistance $sim$3000$%$ at 2.5 K and 14 T. The nonlinear Hall resistivity is observed, which i ndicates the multi-band feature. The first-principles calculations show the electron-hole compensation and the complex Fermi surface in CaAl$_4$, to which the two-band model with over-simplified carrier mobility cant completely apply. Evident quantum oscillations have been observed with B//c and B//ab configurations, from which the nontrivial Berry phase is extracted by the multi-band Lifshitz-Kosevich formula fitting. An electron-type quasi-2D Fermi surface is found by the angle-dependent Shubnikov-de Haas oscillations, de Haas-van Alphen oscillations and the first-principles calculations. The calculations also elucidate that CaAl$_4$ owns a Dirac nodal line type band structure around the $Gamma$ point in the $Z$-$Gamma$-$L$ plane, which is protected by the mirror symmetry as well as the space inversion and time reversal symmetries. Once the spin-orbit coupling is included, the crossed nodal line opens a negligible gap (less than 3 meV). The open-orbit topology is also found in the electron-type Fermi surfaces, which is believed to help enhance the magnetoresistance observed.
We report on a band structure calculation and de Haas-van Alphen measurements of KFe$_2$As$_2$. Three cylindrical Fermi surfaces are found. Effective masses of electrons range from 6 to 18$m_e$, $m_e$ being the free electron mass. Remarkable discrepa ncies between the calculated and observed Fermi surface areas and the large mass enhancement ($gtrsim 3$) highlight the importance of electronic correlations in determining the electronic structures of iron pnicitide superconductors.
Recent studies of the electronic properties of graphite have produced conflicting results regarding the positions of the different carrier types within the Brillouin zone, and the possible presence of Dirac fermions. In this paper we report a compreh ensive study of the de Haas-van Alphen, Shubnikov-de Haas and Hall effects in a sample of highly orientated pyrolytic graphite, at temperatures in the range 30 mK to 4 K and magnetic fields up to 12 T. The transport measurements confirm the Brillouin-zone locations of the different carrier types assigned by Schroeder et al.: electrons are at the K-point, and holes are near the H-points. We extract the cyclotron mass and scattering time for both carrier types from the temperature- and magnetic-field-dependences of the magneto-oscillations. Our results indicate that the holes experience stronger scattering and hence have a lower mobility than the electrons. We utilise phase-frequency analysis and intercept analysis of the 1/B positions of magneto-oscillation extrema to identify the nature of the carriers in graphite, whether they are Dirac or normal (Schrodinger) fermions. These analyses indicate normal holes and electrons of indeterminate nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا