ﻻ يوجد ملخص باللغة العربية
In this paper, we explore the benefits, in the sense of total (sum rate) degrees of freedom (DOF), of cooperation and cognitive message sharing for a two-user multiple-input-multiple-output (MIMO) Gaussian interference channel with $M_1$, $M_2$ antennas at transmitters and $N_1$, $N_2$ antennas at receivers. For the case of cooperation (including cooperation at transmitters only, at receivers only, and at transmitters as well as receivers), the DOF is $min {M_1+M_2, N_1+N_2, max(M_1, N_2)), max(M_2, N_1)}$, which is the same as the DOF of the channel without cooperation. For the case of cognitive message sharing, the DOF is $min {M_1+M_2, N_1+N_2, (1-1_{T2})((1-1_{R2}) max(M_1, N_2) + 1_{R2} (M_1+N_2)), (1-1_{T1})((1-1_{R1}) max(M_2, N_1) + 1_{R1} (M_2+N_1)) }$ where $1_{Ti} = 1$ $(0)$ when transmitter $i$ is (is not) a cognitive transmitter and $1_{Ri}$ is defined in the same fashion. Our results show that while both techniques may increase the sum rate capacity of the MIMO interference channel, only cognitive message sharing can increase the DOF. We also find that it may be more beneficial for a user to have a cognitive transmitter than to have a cognitive receiver.
The Maddah-Ali and Tse (MAT) scheme is a linear precoding strategy that exploits Interference Alignment and perfect, but delayed, channel state information at the transmitters (delayed CSIT), improving the degrees of freedom (DoF) that can be achieve
We characterize the generalized degrees of freedom of the $K$ user symmetric Gaussian interference channel where all desired links have the same signal-to-noise ratio (SNR) and all undesired links carrying interference have the same interference-to-n
We explore the capacity and generalized degrees of freedom of the two-user Gaussian X channel, i.e. a generalization of the 2 user interference channel where there is an independent message from each transmitter to each receiver. There are three main
In this paper, degrees of freedom (DoF) is investigated for the $Mtimes N$ single input single output (SISO) X channel with alternating channel state information at the transmitters (CSIT). It is known that the sum DoF of 2-user SISO X channel with s
In this paper we introduce the two-user asynchronous cognitive multiple access channel (ACMAC). This channel model includes two transmitters, an uninformed one, and an informed one which knows prior to the beginning of a transmission the message whic