ﻻ يوجد ملخص باللغة العربية
We derive the Free Differential Algebra for type IIA supergravity in 10 dimensions in the string frame. We provide all fermionic terms for all curvatures. We derive the Green-Schwarz sigma model for type IIA superstring based on the FDA construction and we check its invariance under kappa-symmetry. Finally, we derive the pure spinor sigma model and we check the BRST invariance. The present derivation has the advantage that the resulting sigma model is constructed in terms of the superfields appearing in the FDA and therefore one can directly relate a supergravity background with the corresponding sigma model. The complete explicit form of the BRST transformations is given and some new pure spinor constraints are obtained. Finally, the explicit form of the action is given.
In this paper we investigate in detail the correspondence between E10 and Romans massive deformation of type IIA supergravity. We analyse the dynamics of a non-linear sigma model for a spinning particle on the coset space E10/K(E10) and show that it
We derive a duality-symmetric action for type IIA D=10 supergravity by the Kaluza-Klein dimensional reduction of the duality-symmetric action for D=11 supergravity with the 3-form and 6-form gauge field. We then double the bosonic fields arising as a
In the previous papers, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond-Ramond background. This was confirmed by agreement between planar correlation
We perform a careful investigation of which p-form fields can be introduced consistently with the supersymmetry algebra of IIA and/or IIB ten-dimensional supergravity. In particular the ten-forms, also known as top-forms, require a careful analysis s
The framework of exceptional field theory is extended by introducing consistent deformations of its generalised Lie derivative. For the first time, massive type IIA supergravity is reproduced geometrically as a solution of the section constraint. Thi