Reversibility of the Fleming-Viot process with mutation, selection, and recombination is well understood. In this paper, we study the reversibility of a system of Fleming-Viot processes that live on a countable number of colonies interacting with each other through migrations between the colonies. It is shown that reversibility fails when both migration and mutation are non-trivial.
We consider predictive inference using a class of temporally dependent Dirichlet processes driven by Fleming--Viot diffusions, which have a natural bearing in Bayesian nonparametrics and lend the resulting family of random probability measures to ana
lytical posterior analysis. Formulating the implied statistical model as a hidden Markov model, we fully describe the predictive distribution induced by these Fleming--Viot-driven dependent Dirichlet processes, for a sequence of observations collected at a certain time given another set of draws collected at several previous times. This is identified as a mixture of Polya urns, whereby the observations can be values from the baseline distribution or copies of previous draws collected at the same time as in the usual P`olya urn, or can be sampled from a random subset of the data collected at previous times. We characterise the time-dependent weights of the mixture which select such subsets and discuss the asymptotic regimes. We describe the induced partition by means of a Chinese restaurant process metaphor with a conveyor belt, whereby new customers who do not sit at an occupied table open a new table by picking a dish either from the baseline distribution or from a time-varying offer available on the conveyor belt. We lay out explicit algorithms for exact and approximate posterior sampling of both observations and partitions, and illustrate our results on predictive problems with synthetic and real data.
In previous work, we constructed Fleming--Viot-type measure-valued diffusions (and diffusions on a space of interval partitions of the unit interval $[0,1]$) that are stationary with the Poisson--Dirichlet laws with parameters $alphain(0,1)$ and $the
tageq 0$. In this paper, we complete the proof that these processes resolve a conjecture by Feng and Sun (2010) by showing that the processes of ranked atom sizes (or of ranked interval lengths) of these diffusions are members of a two-parameter family of diffusions introduced by Petrov (2009), extending a model by Ethier and Kurtz (1981) in the case $alpha=0$. The latter diffusions are continuum limits of up-down Chinese restaurant processes.
We study the Fleming-Viot particle process formed by N interacting continuous-time asymmetric random walks on the cycle graph, with uniform killing. We show that this model has a remarkable exact solvability, despite the fact that it is non-reversibl
e with non-explicit invariant distribution. Our main results include quantitative propagation of chaos and exponential ergodicity with explicit constants, as well as formulas for covariances at equilibrium in terms of the Chebyshev polynomials. We also obtain a bound uniform in time for the convergence of the proportion of particles in each state when the number of particles goes to infinity.
The behavior of the Poisson-Dirichlet distribution with small mutation rate is studied through large deviations. The structure of the rate function indicates that the number of alleles is finite at the instant when mutation appears. The large deviati
on results are then used to study the asymptotic behavior of the homozygosity, and the Poisson-Dirichlet distribution with symmetric selection. The latter shows that several alleles can coexist when selection intensity goes to infinity in a particular way as the mutation rate approaches zero.
We investigate a continuous time, probability measure-valued dynamical system that describes the process of mutation-selection balance in a context where the population is infinite, there may be infinitely many loci, and there are weak assumptions on
selective costs. Our model arises when we incorporate very general recombination mechanisms into a previous model of mutation and selection from Steinsaltz, Evans and Wachter (2005) and take the relative strength of mutation and selection to be sufficiently small. The resulting dynamical system is a flow of measures on the space of loci. Each such measure is the intensity measure of a Poisson random measure on the space of loci: the points of a realization of the random measure record the set of loci at which the genotype of a uniformly chosen individual differs from a reference wild type due to an accumulation of ancestral mutations. Our motivation for working in such a general setting is to provide a basis for understanding mutation-driven changes in age-specific demographic schedules that arise from the complex interaction of many genes, and hence to develop a framework for understanding the evolution of aging. We establish the existence and uniqueness of the dynamical system, provide conditions for the existence and stability of equilibrium states, and prove that our continuous-time dynamical system is the limit of a sequence of discrete-time infinite population mutation-selection-recombination models in the standard asymptotic regime where selection and mutation are weak relative to recombination and both scale at the same infinitesimal rate in the limit.