ترغب بنشر مسار تعليمي؟ اضغط هنا

Medium-resolution spectroscopy of FORJ0332-3557: Probing the interstellar medium and stellar populations of a lensed Lyman-break galaxy at z=3.77

31   0   0.0 ( 0 )
 نشر من قبل David Valls-Gabaud
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We recently reported the discovery of FORJ0332-3557, a lensed Lyman-break galaxy at z=3.77 in a remarkable example of strong galaxy-galaxy gravitational lensing. We present here a medium-resolution rest-frame UV spectrum of the source, which appears to be similar to the well-known Lyman-break galaxy MS1512-cB58 at z=2.73. The spectral energy distribution is consistent with a stellar population of less than 30 Ma, with an extinction of A(V)=0.5 mag and an extinction-corrected star formation rate SFR(UV) of 200-300 Msun/a. The Lyman-alpha line exhibits a damped profile in absorption produced by a column density of about N(HI) = (2.5+_1.0) 10^21 atoms/cm^2, superimposed on an emission line shifted both spatially (0.5 arcsec with respect to the UV continuum source) and in velocity space (+830 km/s with respect to the low-ionisation absorption lines from its interstellar medium), a clear signature of outflows with an expansion velocity of about 270 km/s. A strong emission line from HeII 164.04nm indicates the presence of Wolf-Rayet stars and reinforces the interpretation of a very young starburst. The metallic lines indicate sub-solar abundances of elements Si, Al, and C in the ionised gas phase.

قيم البحث

اقرأ أيضاً

We present VLT/SINFONI near-infrared (NIR) integral field spectroscopy of six $z sim 0.2$ Lyman break galaxy analogs (LBAs), from which we detect HI, HeI, and [FeII] recombination lines, and multiple H$_2$ ro-vibrational lines in emission. Pa$alpha$ kinematics reveal high velocity dispersions and low rotational velocities relative to random motions ($langle v/sigma rangle = 1.2 pm 0.8$). Matched-aperture comparisons of H$beta$, H$alpha$, and Pa$alpha$ reveal that the nebular color excesses are lower relative to the continuum color excesses than is the case for typical local star-forming systems. We compare observed HeI/HI recombination line ratios to photoionization models to gauge the effective temperatures (T$_{rm eff}$) of massive ionizing stars, finding the properties of at least one LBA are consistent with extra heating from an active galactic nucleus (AGN) and/or an overabundance of massive stars. We use H$_2$ 1-0 S($cdot$) ro-vibrational spectra to determine rotational excitation temperature $T_{rm ex} sim 2000$ K for warm molecular gas, which we attribute to UV heating in dense photon-dominated regions. Spatially resolved NIR line ratios favor excitation by massive, young stars, rather than supernovae or AGN feedback. Our results suggest that the local analogs of Lyman break galaxies are primarily subject to strong feedback from recent star formation, with evidence for AGN and outflows in some cases.
By combining HST imaging with optical (VIMOS) and near-infrared (SINFONI) integral field spectroscopy we exploit the gravitational potential of a massive, rich cluster at z=0.9 to study the internal properties of a gravitationally lensed galaxy at z= 4.88. Using a detailed gravitational lens model of the cluster RCS0224-002 we reconstruct the source-frame morphology of the lensed galaxy on 200pc scales and find an ~L* Lyman-break galaxy with an intrinsic size of only 2.0x0.8kpc, a velocity gradient of <60km/s and an implied dynamical mass of 1.0x10^10Mo within 2kpc. We infer an integrated star-formation rate of just 12+/-2Mo/yr from the intrinsic [OII] emission line flux. The Ly-alpha emission appears redshifted by +200+/-40km/s with respect to the [OII] emission. The Ly-alpha is also significantly more extended than the nebular emission, extending over 11.9x2.4kpc. Over this area, the Ly-alpha centroid varies by less than 10km/s. By examining the spatially resolved structure of the [OII] and asymmetric Ly-alpha emission lines we investigate the nature of this system. The model for local starburst galaxies suggested by Mass-Hesse et al. (2003) provides a good description of our data, and suggests that the galaxy is surrounded by a galactic-scale bi-polar outflow which has recently burst out of the system. The outflow, which appears to be currently located >30kpc from the galaxy, is escaping at a speed of upto ~500km/s. Although the mass of the outflow is uncertain, the geometry and velocity of the outflow suggests that the ejected material is travelling far faster than escape velocity and will travel more than 1Mpc (comoving) before eventually stalling.
We present the results of Spectral Energy Distribution(SED) fitting analysis for Lyman Break Galaxies(LBGs) at z~5 in the GOODS-N and its flanking fields (the GOODS-FF). With the publicly available IRAC images in the GOODS-N and IRAC data in the GOOD S-FF, we constructed the rest-frame UV to optical SEDs for a large sample (~100) of UV-selected galaxies at z~5. Comparing the observed SEDs with model SEDs generated with a population synthesis code, we derived a best-fit set of parameters (stellar mass, age, color excess, and star formation rate) for each of sample LBGs. The derived stellar masses range from 10^8 to 10^11M_sun with a median value of 4.1x10^9M_sun. The comparison with z=2-3 LBGs shows that the stellar masses of z~5 LBGs are systematically smaller by a factor of 3-4 than those of z=2-3 LBGs in a similar rest-frame UV luminosity range. The star formation ages are relatively younger than those of the z=2-3 LBGs. We also compared the results for our sample with other studies for the z=5-6 galaxies. Although there seem to be similarities and differences in the properties, we could not conclude its significance. We also derived a stellar mass function of our sample by correcting for incompletenesses. Although the number densities in the massive end are comparable to the theoretical predictions from semi-analytic models, the number densities in the low-mass part are smaller than the model predictions. By integrating the stellar mass function down to 10^8 M_sun, the stellar mass density at z~5 is calculated to be (0.7-2.4)x10^7M_sun Mpc^-3. The stellar mass density at z~5 is dominated by massive part of the stellar mass function. Compared with other observational studies and the model predictions, the mass density of our sample is consistent with general trend of the increase of the stellar mass density with time.
We present the results of Spectral Energy Distribution (SED) fitting analysis for Lyman Break Galaxies (LBGs) at $zsim5$ in the GOODS-N and its flanking fields. From the SED fitting for $sim100$ objects, we found that the stellar masses range from $1 0^{8}$ to $10^{11}M_{odot}$ with a median value of $4times10^{9}M_{odot}$. By using the large sample of galaxies at $zsim5$, we construct the stellar mass function (SMF) with incompleteness corrections. By integrating down to $10^{8}M_{odot}$, the cosmic stellar mass density at $zsim5$ is calculated to be $7times10^{6}M_{odot}textrm{Mpc}^{-3}$.
73 - Brian Siana 2008
We present Spitzer infrared (IR) photometry and spectroscopy of the lensed Lyman break galaxy (LBG), MS1512-cB58 at z=2.73. The large (factor ~30) magnification allows for the most detailed infrared study of an L*_UV(z=3) LBG to date. Broadband photo metry with IRAC (3-10 micron), IRS (16 micron), and MIPS (24, 70 & 160 micron) was obtained as well as IRS spectroscopy spanning 5.5-35 microns. A fit of stellar population models to the optical/near-IR/IRAC photometry gives a young age (~9 Myr), forming stars at ~98 M_sun/yr, with a total stellar mass of ~10^9 M_sun formed thus far. The existence of an old stellar population with twice the stellar mass can not be ruled out. IR spectral energy distribution fits to the 24 and 70 micron photometry, as well as previously obtained submm/mm, data give an intrinsic IR luminosity L_IR = 1-2 x10^11 L_sun and a star formation rate, SFR ~20-40 M_sun/yr. The UV derived star formation rate (SFR) is ~3-5 times higher than the SFR determined using L_IR or L_Halpha because the red UV spectral slope is significantly over predicting the level of dust extinction. This suggests that the assumed Calzetti starburst obscuration law may not be valid for young LBGs. We detect strong line emission from Polycyclic Aromatic Hydrocarbons (PAHs) at 6.2, 7.7, and 8.6 microns. The line ratios are consistent with ratios observed in both local and high redshift starbursts. Both the PAH and rest-frame 8 micron luminosities predict the total L_IR based on previously measured relations in starbursts. Finally, we do not detect the 3.3 micron PAH feature. This is marginally inconsistent with some PAH emission models, but still consistent with PAH ratios measured in many local star-forming galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا