ﻻ يوجد ملخص باللغة العربية
We investigate the construction of quantum low-density parity-check (LDPC) codes from classical quasi-cyclic (QC) LDPC codes with girth greater than or equal to 6. We have shown that the classical codes in the generalized Calderbank-Shor-Steane (CSS) construction do not need to satisfy the dual-containing property as long as pre-shared entanglement is available to both sender and receiver. We can use this to avoid the many 4-cycles which typically arise in dual-containing LDPC codes. The advantage of such quantum codes comes from the use of efficient decoding algorithms such as sum-product algorithm (SPA). It is well known that in the SPA, cycles of length 4 make successive decoding iterations highly correlated and hence limit the decoding performance. We show the principle of constructing quantum QC-LDPC codes which require only small amounts of initial shared entanglement.
Goppa codes are particularly appealing for cryptographic applications. Every improvement of our knowledge of Goppa codes is of particular interest. In this paper, we present a sufficient and necessary condition for an irreducible monic polynomial $g(
Coherent parity check (CPC) codes are a new framework for the construction of quantum error correction codes that encode multiple qubits per logical block. CPC codes have a canonical structure involving successive rounds of bit and phase parity check
Photonic circuits in which stateful components are coupled via guided electromagnetic fields are natural candidates for native implementation of iterative stochastic algorithms based on propagation of information around a graph. Conversely, such mess
Consider transmission over a binary additive white gaussian noise channel using a fixed low-density parity check code. We consider the posterior measure over the code bits and the corresponding correlation between two codebits, averaged over the nois
We consider the effect of log-likelihood ratio saturation on belief propagation decoder low-density parity-check codes. Saturation is commonly done in practice and is known to have a significant effect on error floor performance. Our focus is on thre