ﻻ يوجد ملخص باللغة العربية
A three- and five-component nonlinear Schrodinger-type models, which describe spinor Bose-Einstein condensates (BECs) with hyperfine structures F=1 and F=2 respectively, are studied. These models for particular values of the coupling constants are integrable by the inverse scattering method. They are related to symmetric spaces of BD.I-type SO(2r+1)/(SO(2) x SO(2r-1)) for r=2 and r=3. Using conveniently modified Zakharov-Shabat dressing procedure we obtain different types of soliton solutions.
We analyze a class of multicomponent nonlinear Schrodinger equations (MNLS) related to the symmetric BD.I-type symmetric spaces and their reductions. We briefly outline the direct and the inverse scattering method for the relevant Lax operators and t
We investigate non-degenerate bound state solitons systematically in multi-component Bose-Einstein condensates, through developing Darboux transformation method to derive exact soliton solutions analytically. In particular, we show that bright solito
In this work, we explore systematically various SO(2)-rotation-induced multiple dark-dark soliton breathing patterns obtained from stationary and spectrally stable multiple dark-bright and dark-dark waveforms in trapped one-dimensional, two-component
We characterize the soliton solutions and their interactions for a system of coupled evolution equations of nonlinear Schrodinger (NLS) type that models the dynamics in one-dimensional repulsive Bose-Einstein condensates with spin one, taking advanta
We report on the static and dynamical properties of multiple dark-antidark solitons (DADs) in two-component, repulsively interacting Bose-Einstein condensates. Motivated by experimental observations involving multiple DADs, we present a theoretical s