ترغب بنشر مسار تعليمي؟ اضغط هنا

Good deal bounds induced by shortfall risk

315   0   0.0 ( 0 )
 نشر من قبل Takuji Arai
 تاريخ النشر 2010
  مجال البحث مالية
والبحث باللغة English
 تأليف Takuji Arai




اسأل ChatGPT حول البحث

We shall provide in this paper good deal pricing bounds for contingent claims induced by the shortfall risk with some loss function. Assumptions we impose on loss functions and contingent claims are very mild. We prove that the upper and lower bounds of good deal pricing bounds are expressed by convex risk measures on Orlicz hearts. In addition, we obtain its representation with the minimal penalty function. Moreover, we give a representation, for two simple cases, of good deal bounds and calculate the optimal strategies when a claim is traded at the upper or lower bounds of its good deal pricing bound.



قيم البحث

اقرأ أيضاً

We present the Shortfall Deviation Risk (SDR), a risk measure that represents the expected loss that occurs with certain probability penalized by the dispersion of results that are worse than such an expectation. SDR combines Expected Shortfall (ES) and Shortfall Deviation (SD), which we also introduce, contemplating two fundamental pillars of the risk concept, the probability of adverse events and the variability of an expectation, and considers extreme results. We demonstrate that SD is a generalized deviation measure, whereas SDR is a coherent risk measure. We achieve the dual representation of SDR, and we discuss issues such as its representation by a weighted ES, acceptance sets, convexity, continuity and the relationship with stochastic dominance. Illustrations with real and simulated data allow us to conclude that SDR offers greater protection in risk measurement compared with VaR and ES, especially in times of significant turbulence in riskier scenarios.
158 - Takuji Arai 2015
We investigate the structure of good deal bounds, which are subintervals of a no-arbitrage pricing bound, for financial market models with convex constraints as an extension of Arai and Fukasawa (2014). The upper and lower bounds of a good deal bound are naturally described by a convex risk measure. We call such a risk measure a good deal valuation; and study its properties. We also discuss superhedging cost and Fundamental Theorem of Asset Pricing for convex constrained markets.
We derive bounds on the distribution function, therefore also on the Value-at-Risk, of $varphi(mathbf X)$ where $varphi$ is an aggregation function and $mathbf X = (X_1,dots,X_d)$ is a random vector with known marginal distributions and partially kno wn dependence structure. More specifically, we analyze three types of available information on the dependence structure: First, we consider the case where extreme value information, such as the distributions of partial minima and maxima of $mathbf X$, is available. In order to include this information in the computation of Value-at-Risk bounds, we utilize a reduction principle that relates this problem to an optimization problem over a standard Frechet class, which can then be solved by means of the rearrangement algorithm or using analytical results. Second, we assume that the copula of $mathbf X$ is known on a subset of its domain, and finally we consider the case where the copula of $mathbf X$ lies in the vicinity of a reference copula as measured by a statistical distance. In order to derive Value-at-Risk bounds in the latter situations, we first improve the Frechet--Hoeffding bounds on copulas so as to include this additional information on the dependence structure. Then, we translate the improved Frechet--Hoeffding bounds to bounds on the Value-at-Risk using the so-called improved standard bounds. In numerical examples we illustrate that the additional information typically leads to a significant improvement of the bounds compared to the marginals-only case.
This paper gives an overview of the theory of dynamic convex risk measures for random variables in discrete time setting. We summarize robust representation results of conditional convex risk measures, and we characterize various time consistency pro perties of dynamic risk measures in terms of acceptance sets, penalty functions, and by supermartingale properties of risk processes and penalty functions.
We introduce and study the main properties of a class of convex risk measures that refine Expected Shortfall by simultaneously controlling the expected losses associated with different portions of the tail distribution. The corresponding adjusted Exp ected Shortfalls quantify risk as the minimum amount of capital that has to be raised and injected into a financial position $X$ to ensure that Expected Shortfall $ES_p(X)$ does not exceed a pre-specified threshold $g(p)$ for every probability level $pin[0,1]$. Through the choice of the benchmark risk profile $g$ one can tailor the risk assessment to the specific application of interest. We devote special attention to the study of risk profiles defined by the Expected Shortfall of a benchmark random loss, in which case our risk measures are intimately linked to second-order stochastic dominance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا