ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep ACS Imaging in the Globular Cluster NGC6397: Dynamical Models

160   0   0.0 ( 0 )
 نشر من قبل Jarrod R. Hurley
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present N-body models to complement deep imaging of the metal-poor core-collapsed cluster NGC6397 obtained with the Hubble Space Telescope. All simulations include stellar and binary evolution in-step with the stellar dynamics and account for the tidal field of the Galaxy. We focus on the results of a simulation that began with 100000 objects (stars and binaries), 5% primordial binaries and Population II metallicity. After 16 Gyr of evolution the model cluster has about 20% of the stars remaining and has reached core-collapse. We compare the color-magnitude diagrams of the model at this age for the central region and an outer region corresponding to the observed field of NGC6397 (about 2-3 half-light radii from the cluster centre). This demonstrates that the white dwarf population in the outer region has suffered little modification from dynamical processes - contamination of the luminosity function by binaries and white dwarfs with non-standard evolution histories is minimal and should not significantly affect measurement of the cluster age. We also show that the binary fraction of main-sequence stars observed in the NGC6397 field can be taken as representative of the primordial binary fraction of the cluster. For the mass function of the main-sequence stars we find that although this has been altered significantly by dynamics over the cluster lifetime, especially in the central and outer regions, that the position of the observed field is close to optimal for recovering the initial mass function of the cluster stars (below the current turn-off mass). More generally we look at how the mass function changes with radius in a dynamically evolved stellar cluster and suggest where the best radial position to observe the initial mass function is for clusters of any age.



قيم البحث

اقرأ أيضاً

157 - Harvey B. Richer 2007
We present the CMD from deep HST imaging in the globular cluster NGC 6397. The ACS was used for 126 orbits to image a single field in two colors (F814W, F606W) 5 arcmin SE of the cluster center. The field observed overlaps that of archival WFPC2 data from 1994 and 1997 which were used to proper motion (PM) clean the data. Applying the PM corrections produces a remarkably clean CMD which reveals a number of features never seen before in a globular cluster CMD. In our field, the main sequence stars appeared to terminate close to the location in the CMD of the hydrogen-burning limit predicted by two independent sets of stellar evolution models. The faintest observed main sequence stars are about a magnitude fainter than the least luminous metal-poor field halo stars known, suggesting that the lowest luminosity halo stars still await discovery. At the bright end the data extend beyond the main sequence turnoff to well up the giant branch. A populous white dwarf cooling sequence is also seen in the cluster CMD. The most dramatic features of the cooling sequence are its turn to the blue at faint magnitudes as well as an apparent truncation near F814W = 28. The cluster luminosity and mass functions were derived, stretching from the turn off down to the hydrogen-burning limit. It was well modeled with either a very flat power-law or a lognormal function. In order to interpret these fits more fully we compared them with similar functions in the cluster core and with a full N-body model of NGC 6397 finding satisfactory agreement between the model predictions and the data. This exercise demonstrates the important role and the effect that dynamics has played in altering the cluster IMF.
54 - Paul Goudfrooij 2007
(ABRIDGED) The ACS camera on board the Hubble Space Telescope has been used to obtain deep images of the giant elliptical galaxy NGC 3610, a well-established dissipative galaxy merger remnant. These observations supersede previous WFPC2 images which revealed the presence of a population of metal-rich globular clusters (GCs) of intermediate age (~1.5-4 Gyr). We detect a total of 580 GC candidates, 46% more than from the previous WFPC2 images. The new photometry strengthens the significance of the previously found bimodality of the color distribution of GCs. Peak colors in V-I are 0.93 +/-0.01 and 1.09 +/- 0.01 for the blue and red subpopulations, respectively. The luminosity function (LF) of the inner 50% of the metal-rich (`red) population of GCs differs markedly from that of the outer 50%. In particular, the LF of the inner 50% of the red GCs shows a flattening consistent with a turnover that is about 1.0 mag fainter than the turnover of the blue GC LF. This is consistent with predictions of recent models of GC disruption for the age range mentioned above and for metallicities that are consistent with the peak color of the red GCs as predicted by population synthesis models. We determine the specific frequency of GCs in NGC 3610 and find a present-day value of S_N = 1.4 +/- 0.6. We estimate that this value will increase to S_N = 3.8 +/- 1.7 at an age of 10 Gyr, which is consistent with typical S_N values for `normal ellipticals. Our findings constitute further evidence in support of the notion that metal-rich GC populations formed during major mergers involving gas-rich galaxies can evolve dynamically (through disruption processes) into the red, metal-rich GC populations that are ubiquitous in `normal giant ellipticals.
We present HST/ACS $g$ and $z$ photometry and half-light radii $R_{rm h}$ measurements of 360 globular cluster (GC) candidates around the nearby S0 galaxy NGC 3115. We also include Subaru/Suprime-Cam $g$, $r$, and $i$ photometry of 421 additional can didates. The well-established color bimodality of the GC system is obvious in the HST/ACS photometry. We find evidence for a blue tilt in the blue GCs, wherein the blue GCs get redder as luminosity increases, indicative of a mass-metallicity relationship. We find a color gradient in both the red and blue subpopulations, with each group of clusters becoming bluer at larger distances from NGC 3115. The gradient is of similar strength in both subpopulations, but is monotonic and more significant for the blue clusters. On average, the blue clusters have ~10% larger $R_{rm h}$ than the red clusters. This average difference is less than is typically observed for early-type galaxies but does match that measured in the literature for M104, suggesting that morphology and inclination may affect the measured size difference between the red and blue clusters. However, the scatter on the $R_{rm h}$ measurements is large. We also identify 31 clusters more extended than typical GCs, which we consider ultra-compact dwarf (UCD) candidates. Many of these objects are fainter than typical UCDs. While it is likely that a significant number will be background contaminants, six of these UCD candidates are spectroscopically confirmed. To explore low-mass X-ray binaries in the GC system, we match our ACS and Suprime-Cam detections to corresponding Chandra X-ray sources. We identify 45 X-ray - GC matches, 16 among the blue subpopulation and 29 among the red subpopulation. These X-ray/GC coincidence fractions are larger than is typical for most GC systems, probably due to the increased depth of the X-ray data compared to previous studies of GC systems.
Globular Clusters (GCs) in the Milky Way represent the ideal laboratory to establish the age of the oldest stellar populations and to measure the color-magnitude relation of stars. Infrared (IR) photometry of these objects provides a new opportunity to accomplish this task. In particular, at low stellar masses, the stellar main sequence (MS) in an IR color-magnitude diagram (CMD) exhibits a sharp kink (due to opacity effects in M dwarfs), such that lower mass and cooler dwarfs become bluer in the F110W - F160W color baseline and not redder. This inversion of the color-magnitude relation offers the possibility to fit GC properties using IR imaging, and to reduce their uncertainties. Here, we used the IR channel of the Wide Field Camera 3 onboard the Hubble Space Telescope to obtain new, deep high-resolution photometry of the old metal-poor GC NGC6397. From the analysis of the GC CMD, we revealed below the MS kink the presence of two MSs with different chemical composition. We derived the cluster fiducial line and we compared it with a grid of isochrones over a large range of parameter space, allowing age, metallicity, distance and reddening to vary freely within reasonable selected ranges. We derived an age of 12.6 Gyr with a random uncertainty sigma ~ 0.7 Gyr. These results confirm that the analysis of the IR color-magnitude of stars provide a valuable tool to measure the GC ages and offers a new venue to determine their absolute age to sub-Gyr accuracy with next generation IR telescopes.
We investigate the old globular cluster (GC) population of 68 faint (Mv>-16 mag) dwarf galaxies located in the halo regions of nearby (<12 Mpc) loose galaxy groups and in the field environment based on archival HST/ACS images in F606W and F814W filte rs. The combined color distribution of 175 GC candidates peaks at (V-I)=0.96 +/- 0.07 mag and the GC luminosity function turnover for the entire sample is found at Mv,to = -7.6 +/- 0.11 mag, similar to the old metal-poor LMC GC population. Our data reveal a tentative trend of Mv,to becoming fainter from late-type to early-type galaxies. The luminosity and color distributions of GCs in dIrrs shows a lack of faint blue GCs. Our analysis reveals that this might reflect a relatively younger GC system than typically found in luminous early-type galaxies. If verified by spectroscopy this would suggest a later formation epoch of the first metal-poor star clusters in dwarf galaxies. We find several bright (massive) GCs which reside in the nuclear regions of their host galaxies. These nuclear clusters have similar luminosities and structural parameters as the peculiar Galactic clusters suspected of being the remnant nuclei of accreted dwarf galaxies, such as M54 and wCen. Except for these nuclear clusters, the distribution of GCs in dIrrs in the half-light radius vs. cluster mass plane is very similar to that of Galactic young halo clusters, which suggests comparable formation and dynamical evolution histories. A comparison with theoretical models of cluster disruption indicates that GCs in low-mass galaxies evolve dynamically as self-gravitating systems in a benign tidal environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا