The aim of this paper is to construct and examine three candidates for local-to-global spectral sequences for the cohomology of diagrams of algebras with directed indexing. In each case, the $E^2$ -terms can be viewed as a type of local cohomology relative to a map or an object in the diagram.
Magnitude homology was introduced by Hepworth and Willerton in the case of graphs, and was later extended by Leinster and Shulman to metric spaces and enriched categories. Here we introduce the dual theory, magnitude cohomology, which we equip with t
he structure of an associative unital graded ring. Our first main result is a recovery theorem showing that the magnitude cohomology ring of a finite metric space completely determines the space itself. The magnitude cohomology ring is non-commutative in general, for example when applied to finite metric spaces, but in some settings it is commutative, for example when applied to ordinary categories. Our second main result explains this situation by proving that the magnitude cohomology ring of an enriched category is graded-commutative whenever the enriching category is cartesian. We end the paper by giving complete computations of magnitude cohomology rings for several large classes of graphs.
We explain how higher homotopy operations, defined topologically, may be identified under mild assumptions with (the last of) the Dwyer-Kan-Smith cohomological obstructions to rectifying homotopy-commutative diagrams.
For certain motivic spectra, we construct a square of spectral sequences relating the effective slice spectral sequence and the motivic Adams spectral sequence. We show the square can be constructed for connective algebraic K-theory, motivic Morava K
-theory, and truncated motivic Brown-Peterson spectra. In these cases, we show that the $mathbb{R}$-motivic effective slice spectral sequence is completely determined by the $rho$-Bockstein spectral sequence. Using results of Heard, we also obtain applications to the Hill-Hopkins-Ravenel slice spectral sequences for connective Real K-theory, Real Morava K-theory, and truncated Real Brown-Peterson spectra.
Operadic tangent cohomology generalizes the existing theories of Harrison cohomology, Chevalley--Eilenberg cohomology and Hochschild cohomology. These are usually non-trivial to compute. We complement the existing computational techniques by producin
g a spectral sequence that converges to the operadic tangent cohomology of a fixed algebra. Our main technical tool is that of filtrations arising from towers of cofibrations of algebras, which play the same role cell attaching maps and skeletal filtrations do for topological spaces. As an application, we consider the rational Adams--Hilton construction on topological spaces, where our spectral sequence gives rise to a seemingly new and completely algebraic description of the Serre spectral sequence, which we also show is multiplicative and converges to the Chas--Sullivan loop product. Finally, we consider relative Sullivan--de Rham models of a fibration $p$, where our spectral sequence converges to the rational homotopy groups of the identity component of the space of self-fiber homotopy equivalences of $p$.
We prove that the Morava-$K$-theory-based Eilenberg-Moore spectral sequence has good convergence properties whenever the base space is a $p$-local finite Postnikov system with vanishing $(n+1)$st homotopy group.