ﻻ يوجد ملخص باللغة العربية
We propose a superspace formulation for the Weyl multiplet of N=1 conformal supergravity in five dimensions. The corresponding superspace constraints are invariant under super-Weyl transformations generated by a real scalar parameter. The minimal supergravity multiplet, which was introduced by Howe in 1981, emerges if one couples the Weyl multiplet to an Abelian vector multiplet and then breaks the super-Weyl invariance by imposing the gauge condition W=1, with W the field strength of the vector multiplet. The geometry of superspace is shown to allow the existence of a large family of off-shell supermultiplets that possess uniquely determined super-Weyl transformation laws and can be used to describe supersymmetric matter. Many of these supermultiplets have not appeared within the superconformal tensor calculus. We formulate a manifestly locally supersymmetric and super-Weyl invariant action principle. In the super-Weyl gauge W=1, this action reduces to that constructed in arXiv:0712.3102. We also present a superspace formulation for the dilaton Weyl multiplet.
In both ${cal N}=1$ and ${cal N}=2$ supersymmetry, it is known that $mathsf{Sp}(2n, {mathbb R})$ is the maximal duality group of $n$ vector multiplets coupled to chiral scalar multiplets $tau (x,theta) $ that parametrise the Hermitian symmetric space
This paper is a companion to our earlier work arXiv:0710.3440 in which the projective superspace formulation for matter-coupled simple supergravity in five dimensions was presented. For the minimal multiplet of 5D N=1 supergravity introduced by Howe
We revisit supersymmetric solutions to five dimensional ungauged N=1 supergravity with dynamic hypermultiplets. In particular we focus on a truncation to the axion-dilaton contained in the universal hypermultiplet. The relevant solutions are fibratio
The most general lagrangian describing spin 2 particles in flat spacetime and containing operators up to (mass) dimension 6 is carefully analyzed, determining the precise conditions for it to be invariant under linearized (transverse) diffeomorphisms
We study 5-dimensional supergravity on S^1/Z_2 with a physical Z_2-odd vector multiplet, which yields an additional modulus other than the radion. We derive 4-dimensional effective theory and find additional terms in the Kahler potential that are pec