ترغب بنشر مسار تعليمي؟ اضغط هنا

Pattern formation in mixtures of ultracold atoms in optical lattices

63   0   0.0 ( 0 )
 نشر من قبل Jim Freericks
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. M. Maska




اسأل ChatGPT حول البحث

Regular pattern formation is ubiquitous in nature; it occurs in biological, physical, and materials science systems. Here we propose a set of experiments with ultracold atoms that show how to examine different types of pattern formation. In particular, we show how one can see the analog of labyrinthine patterns (so-called quantum emulsions) in mixtures of light and heavy atoms (that tend to phase separate) by tuning the trap potential and we show how complex geometrically ordered patterns emerge (when the mixtures do not phase separate), which could be employed for low-temperature thermometry. The complex physical mechanisms for the pattern formation at zero temperature are understood within a theoretical analysis called the local density approximation.

قيم البحث

اقرأ أيضاً

We propose to realize one-dimensional topological phases protected by SU($N$) symmetry using alkali or alkaline-earth atoms loaded into a bichromatic optical lattice. We derive a realistic model for this system and investigate it theoretically. Depen ding on the parity of $N$, two different classes of symmetry-protected topological (SPT) phases are stabilized at half-filling for physical parameters of the model. For even $N$, the celebrated spin-1 Haldane phase and its generalization to SU($N$) are obtained with no local symmetry breaking. In stark contrast, at least for $N=3$, a new class of SPT phases, dubbed chiral Haldane phases, that spontaneously break inversion symmetry, emerge with a two-fold ground-state degeneracy. The latter ground states with open-boundary conditions are characterized by different left and right boundary spins which are related by conjugation. Our results show that topological phases are within close reach of the latest experiments on cold fermions in optical lattices.
Scalable, coherent many-body systems can enable the realization of previously unexplored quantum phases and have the potential to exponentially speed up information processing. Thermal fluctuations are negligible and quantum effects govern the behavi or of such systems with extremely low temperature. We report the cooling of a quantum simulator with 10,000 atoms and mass production of high-fidelity entangled pairs. In a two-dimensional plane, we cool Mott insulator samples by immersing them into removable superfluid reservoirs, achieving an entropy per particle of $1.9^{+1.7}_{-0.4} times 10^{-3} k_{text{B}}$. The atoms are then rearranged into a two-dimensional lattice free of defects. We further demonstrate a two-qubit gate with a fidelity of 0.993 $pm$ 0.001 for entangling 1250 atom pairs. Our results offer a setting for exploring low-energy many-body phases and may enable the creation of large-scale entanglement
Critical behavior developed near a quantum phase transition, interesting in its own right, offers exciting opportunities to explore the universality of strongly-correlated systems near the ground state. Cold atoms in optical lattices, in particular, represent a paradigmatic system, for which the quantum phase transition between the superfluid and Mott insulator states can be externally induced by tuning the microscopic parameters. In this paper, we describe our approach to study quantum criticality of cesium atoms in a two-dimensional lattice based on in situ density measurements. Our research agenda involves testing critical scaling of thermodynamic observables and extracting transport properties in the quantum critical regime. We present and discuss experimental progress on both fronts. In particular, the thermodynamic measurement suggests that the equation of state near the critical point follows the predicted scaling law at low temperatures.
We investigate the effect of mass imbalance in binary Fermi mixtures loaded in optical lattices. Using dynamical mean-field theory, we study the transition from a fluid to a Mott insulator driven by the repulsive interactions. For almost every value of the parameters we find that the light species with smaller bare mass is more affected by correlations than the heavy one, so that their effective masses become closer than their bare masses before a Mott transition occurs. The strength of the critical repulsion decreases monotonically as the mass imbalance grows so that the minimum is realized when one of the species is localized. The evolution of the spectral functions testifies that a continuous loss of coherence and a destruction of the Fermi liquid occur as the imbalance grows. The two species display distinct properties and experimentally-observable deviations from the behavior of a balanced Fermi mixture.
We report on the controlled creation of a valence bond state of delocalized effective-spin singlet and triplet dimers by means of a bichromatic optical superlattice. We demonstrate a coherent coupling between the singlet and triplet states and show h ow the superlattice can be employed to measure the singlet-fraction employing a spin blockade effect. Our method provides a reliable way to detect and control nearest-neighbor spin correlations in many-body systems of ultracold atoms. Being able to measure these correlations is an important ingredient to study quantum magnetism in optical lattices. We furthermore employ a SWAP operation between atoms being part of different triplets, thus effectively increasing their bond-length. Such SWAP operation provides an important step towards the massively parallel creation of a multi-particle entangled state in the lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا