ترغب بنشر مسار تعليمي؟ اضغط هنا

The RDF Virtual Machine

64   0   0.0 ( 0 )
 نشر من قبل Marko A. Rodriguez
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Resource Description Framework (RDF) is a semantic network data model that is used to create machine-understandable descriptions of the world and is the basis of the Semantic Web. This article discusses the application of RDF to the representation of computer software and virtual computing machines. The Semantic Web is posited as not only a web of data, but also as a web of programs and processes.


قيم البحث

اقرأ أيضاً

251 - Simon Dobson 2013
Co-operative and pre-emptive scheduling are usually considered to be complementary models of threading. In the case of virtual machines, we show that they can be unified using a single concept, the bounded execution of a thread of control, essentiall y providing a first-class representation of a computation as it is reduced. Furthermore this technique can be used to surface the thread scheduler of a language into the language itself, allowing programs to provide their own schedulers without any additional support in the virtual machine, and allowing the same virtual machine to support different thread models simultaneously and without re-compilation.
Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, ma ke it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.
In order to handle the complexity and heterogeneity of mod- ern instruction set architectures, analysis platforms share a common design, the adoption of hardware-independent intermediate representa- tions. The usage of these platforms to verify syste ms down to binary-level is appealing due to the high degree of automation they provide. How- ever, it introduces the need for trusting the correctness of the translation from binary code to intermediate language. Achieving a high degree of trust is challenging since this transpilation must handle (i) all the side effects of the instructions, (ii) multiple instruction encoding (e.g. ARM Thumb), and (iii) variable instruction length (e.g. Intel). We overcome these problems by formally modeling one of such intermediate languages in the interactive theorem prover HOL4 and by implementing a proof- producing transpiler. This tool translates ARMv8 programs to the in- termediate language and generates a HOL4 proof that demonstrates the correctness of the translation in the form of a simulation theorem. We also show how the transpiler theorems can be used to transfer properties verified on the intermediate language to the binary code.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا