ﻻ يوجد ملخص باللغة العربية
The small neutrino mass observed in neutrino oscillations is nicely explained by the seesaw mechanism. Rich phenomenology is generally expected if the heavy neutrinos are not much heavier than the electroweak scale. A model with this feature built in has been suggested recently by Hung. The model keeps the standard gauge group but introduces chirality-flipped partners for the fermions. In particular, a right-handed neutrino forms a weak doublet with a charged heavy lepton, and is thus active. We analyze the lepton flavor structure in gauge interactions. The mixing matrices in charged currents (CC) are generally non-unitary, and their deviation from unitarity induces flavor changing neutral currents (FCNC). We calculate the branching ratios for the rare decays muto egamma and muto eebar e due to the gauge interactions. Although the former is generally smaller than the latter by three orders of magnitude, parameter regions exist in which muto egamma is reachable in the next generation of experiments even if the current stringent bound on muto eebar e is taken into account. If light neutrinos dominate for muto egamma, the latter cannot set a meaningful bound on unitarity violation in the mixing matrix of light leptons due to significant cancelation between CC and FCNC contributions. Instead, the role is taken over by the decay muto eebar e.
The muon-to-electron conversion in nuclei like aluminum, titanium and gold is studied in the context of a class of mirror fermion model with non-sterile right-handed neutrinos having mass at the electroweak scale. At the limit of zero momentum transf
We study lepton flavor number violating rare B decays, $b to s l_h^{pm} l_l^{mp}$, in a seesaw model with low scale singlet Majorana neutrinos motivated by the resonant leptogenesis scenario. The branching ratios of inclusive decays $ b to s l_h^{pm}
We study lepton flavor violating (LFV) tau and B decays in models with heavy neutrinos to constrain the mixing matrix parameters U_{tau N}. We find that the best current constraints when the heavy neutrinos are purely left-handed come from LFV radiat
The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a) right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b) a horizontal symmet
Exotic Higgs decays are promising channels to discover new physics in the near future. We present a simple model with a new light scalar that couples to the Standard Model through a charged lepton-flavor violating interaction. This can yield exciting