ﻻ يوجد ملخص باللغة العربية
We investigate the effects of the radiatively-generated tan beta-enhanced Higgs-singlet Yukawa couplings on the decay $Upsilonto gamma A_1$ in the NMSSM, where $A_1$ is the lightest CP-odd scalar. This radiative coupling is found to dominate in the case of a highly singlet Higgs pseudoscalar. The branching ratio for the production of such a particle is shown to be within a few orders of magnitude of current experimental constraints across a significant region of parameter space. This represents a potentially observable signal for experiments at present B-factories.
We consider tan(beta)-enhanced quantum effects in the minimal supersymmetric standard model (MSSM) including those from the Higgs sector. To this end, we match the MSSM to an effective two-Higgs doublet model (2HDM), assuming that all SUSY particles
We extend previous combinations of LEP and cosmological relic density constraints on the parameter space of the constrained MSSM, with universal input supersymmetry-breaking parameters, to large tan beta. We take account of the possibility that the l
Singlet Higgs bosons present in extensions of the MSSM can have sizable Yukawa couplings to the b quark and the tau lepton for large values of tan(beta) at the 1-loop level. We present an effective Lagrangian which incorporates these tan(beta)-enhanc
We present an analysis of non-leptonic B decays in the minimally flavour-violating MSSM with large tan(beta). We relate the Wilson coefficients of the relevant hadronic scalar operators to leptonic observables, showing that the present limits on the
We point out that, contrary to general belief, generic supersymmetric models are not technically unnatural in the limit of very large values of the parameter tan(beta) when radiative corrections are properly included. Rather, an upper limit on tan(be