ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared Properties Of AGB Stars: from Existing Databases to Antarctic Surveys

28   0   0.0 ( 0 )
 نشر من قبل Roald Guandalini
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here a study of the Infrared properties of Asymptotic Giant Branch stars (hereafter AGB) based on existing databases, mainly from space-borne experiments. Preliminary results about C and S stars are discussed, focusing on the topics for which future Infrared surveys from Antarctica will be crucial. This kind of surveys will help in making more quantitative our knowledge of the last evolutionary stages of low mass stars, especially for what concerns luminosities and mass loss.

قيم البحث

اقرأ أيضاً

We present ground-based mid-infrared imaging for 27 M-, S- and C-type Asymptotic Giant Branch (AGB) stars. The data are compared with those of the database available thanks to the IRAS, ISO, MSX and 2MASS catalogues. Our goal is to establish relation s between the IR colors, the effective temperature $T_{eff}$, the luminosity $L$ and the mass loss rate $dot M$, for improving the effectiveness of AGB modelling. Bolometric (absolute) magnitudes are obtained through distance compilations, and by applying previously-derived bolometric corrections; the variability is also studied, using data accumulated since the IRAS epoch. The main results are: i) Values of $L$ and $dot M$ for C stars fit relations previously established by us, with Miras being on average more evolved and mass losing than Semiregulars. ii) Moderate IR excesses (as compared to evolutionary tracks) are found for S and M stars in our sample: they are confirmed to originate from the dusty circumstellar environment. iii) A larger reddening characterizes C-rich Miras and post-AGBs. In this case, part of the excess is due to AGB models overestimating $T_{eff}$ for C-stars, as a consequence of the lack of suitable molecular opacities. This has a large effect on the colors of C-rich sources and sometimes disentangling the photospheric and circumstellar contributions is difficult; better model atmospheres should be used in stellar evolutionary codes for C stars. iv) The presence of a long-term variability at mid-IR wavelengths seems to be limited to sources with maximum emission in the 8 -- 20 $mu$m region, usually Mira variables (1/3 of our sample). Most Semiregular and post-AGB stars studied here remained remarkably constant in mid-IR over the last twenty years.
Binary post-asymptotic giant branch (post-AGB) stars are thought to be the products of a strong but poorly-understood interaction during the AGB phase. The aim of this contribution is to update the orbital elements of a sample of galactic post-AGB bi naries observed in a long-term radial-velocity monitoring campaign. Radial velocities are computed from high signal-to-noise spectra by use of a cross-correlation method. The radial-velocity curves are fitted by using both a least-squares algorithm and a Nelder-Mead simplex algorithm. We use a Monte Carlo method to compute uncertainties on the orbital elements. The resulting mass functions are used to derive a companion mass distribution by optimising the predicted to the observed cumulative mass-function distributions, after correcting for observational bias. As a result, we derive and update orbital elements for 33 galactic post-AGB binaries, among which 3 are new orbits. The orbital periods of the systems range from 100 to about 3000 days. Over 70 percent (23 out of 33) of our binaries have significant non-zero eccentricities ranging over all periods. Their orbits are non-circular despite the fact that the Roche-lobe radii are smaller than the maximum size of a typical AGB star and tidal circularisation should have been strong when the objects were on the AGB. We derive a distribution of companion masses that is peaked around 1.09 $M_odot$ with a standard deviation of 0.62 $M_odot$. The large spread in companion masses highlights the diversity of post-AGB binary systems. Furthermore, we find that only post-AGB stars with high effective temperatures (> 5500 K) in wide orbits are depleted in refractory elements, suggesting that re-accretion of material from a circumbinary disc is an ongoing process. It appears, however, that chemical depletion is inefficient for the closest orbits irrespective of the actual surface temperature.
Dust is formed in the expanding atmosphere during late stages of stellar evolution. Dust influences the dynamics and thermodynamics of the stellar atmosphere by its opacity. The dust opacity depends both on the optical properties of the grain materia l as well as on the amount of dust present. A rich source of information on some mineral phases of dust in AGB stars comes from the study of presolar grains from meteorites. This paper presents a short overview of presolar grains studies and describes how the optical properties of dust grains are obtained in the laboratory.
Post-AGB stars are key objects for the study of the dramatic morphological changes of low- to intermediate-mass stars on their evolution from the Asymptotic Giant Branch (AGB) towards the Planetary Nebula stage. There is growing evidences that binary interaction processes may very well have a determining role in the shaping process of many objects, but so far direct evidence is still weak. We aim at a systematic study of the dust distribution around a large sample of Post-AGB stars as a probe of the symmetry breaking in the nebulae around these systems. We used imaging in the mid-infrared to study the inner part of these evolved stars to probe direct emission from dusty structures in the core of Post-AGB stars in order to better understand their shaping mechanisms. We imaged a sample of 93 evolved stars and nebulae in the mid-infrared using VISIR/VLT, T-Recs/Gemini South and Michelle/Gemini North. We found that all the the Proto-Planetary Nebulae we resolved show a clear departure from spherical symmetry. 59 out of the 93 observed targets appear to be non resolved. The resolved targets can be divided in two categories. The nebulae with a dense central core, that are either bipolar and multipolar. The nebulae with no central core have an elliptical morphology.The dense central torus observed likely host binary systems which triggered fast outflows that shaped the nebulae.
To study the nature of Bulge AGB stars and in particular their circumstellar dust, we have analysed mid-infrared spectra obtained with the ISOCAM CVF spectrometer in three Bulge fields. The ISOCAM 5-16.5 micron CVF spectra were obtained as part of th e ISOGAL infrared survey of the inner Galaxy. A classification of the shape of the 10 micron dust feature was made for each case. The spectra of the individual sources were modelled using a radiative transfer model. Different combinations of amorphous silicates and aluminium-oxide dust were used in the modelling. Spectra were obtained for 29 sources of which 26 are likely to be Bulge AGB stars. Our modelling shows that the stars suffer mass loss rates in the range of 10^{-8} - 5 x 10^{-7} Msun / yr, which is at the low end of the mass-loss rates experienced on the Thermally Pulsing AGB. The luminosities range from 1,700 to 7,700 Lsun as expected for a population of AGB stars with Minit of 1.5 - 2Msun. In agreement with the condensation sequence scenario, we find that the dust content is dominated by Al_2O_3 grains in this sample of low mass-loss rate stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا