ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling solar-like variability for the detection of Earth-like planetary transits. I. Performance of the three-spot modelling and harmonic function fitting

48   0   0.0 ( 0 )
 نشر من قبل Antonino Francesco Lanza
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comparison of two methods of fitting solar-like variability to increase the efficiency of detection of Earth-like planetary transits across the disk of a Sun-like star. One of them is the harmonic fitting method that coupled with the BLS detection algorithm demonstrated the best performance during the first CoRoT blind test. We apply a Monte Carlo approach by simulating a large number of light curves of duration 150 days for different values of planetary radius, orbital period, epoch of the first transit, and standard deviation of the photon shot noise. Stellar variability is assumed in all the cases to be given by the Total Solar Irradiance variations as observed close to the maximum of solar cycle 23. After fitting solar variability, transits are searched for by means of the BLS algorithm. We find that a model based on three point-like active regions is better suited than a best fit with a linear combination of 200 harmonic functions to reduce the impact of stellar microvariability provided that the standard deviation of the noise is 2-4 times larger than the central depth of the transits. On the other hand, the 200-harmonic fit is better when the standard deviation of the noise is comparable to the transit depth. Our results show the advantage of a model including a simple but physically motivated treatment of stellar microvariability for the detection of planetary transits when the standard deviation of the photon shot noise is greater than the transit depth and stellar variability is analogous to solar irradiance variations.

قيم البحث

اقرأ أيضاً

We present a comparison of four methods of filtering solar-like variability to increase the efficiency of detection of Earth-like planetary transits by means of box-shaped transit finder algorithms. Two of these filtering methods are the harmonic fit ting method and the iterative non-linear filter that, coupled respectively with the Box Least-Square (BLS) and Box Maximum-Likelihood algorithms, demonstrated the best performance during the first detection blind test organized inside the CoRoT consortium. The third method, the 3-spot model, is a simplified physical model of Sun-like variability and the fourth is a simple sliding boxcar filter. We apply a Monte Carlo approach by simulating a large number of 150-day light curves (as for CoRoT long runs) for different planetary radii, orbital periods, epochs of the first transit and standard deviations of the photon shot noise. Stellar variability is given by the Total Solar Irradiance variations as observed close to the maximum of solar cycle 23. After filtering solar variability, transits are searched for by means of the BLS algorithm. We find that the iterative non-linear filter is the best method to filter light curves of solar-like stars when a suitable window can be chosen. As the performance of this filter depends critically on the length of its window, we point out that the window must be as long as possible, according to the magnetic activity level of the star. We show an automatic method to choose the extension of the filter window from the power spectrum of the light curves. The iterative non-linear filter, when used with a suitable choice of its window, has a better performance than more complicated and computationally intensive methods of fitting solar-like variability, like the 200-harmonic fitting or the 3-spot model.
234 - L. Kaltenegger , W.A. Traub 2009
Transmission spectroscopy of Earth-like exoplanets is a potential tool for habitability screening. Transiting planets are present-day Rosetta Stones for understanding extrasolar planets because they offer the possibility to characterize giant planet atmospheres and should provide an access to biomarkers in the atmospheres of Earth-like exoplanets, once they are detected. Using the Earth itself as a proxy we show the potential and limits of the transiting technique to detect biomarkers on an Earth-analog exoplanet in transit. We quantify the Earths cross section as a function of wavelength, and show the effect of each atmospheric species, aerosol, and Rayleigh scattering. Clouds do not significantly affect this picture because the opacity of the lower atmosphere from aerosol and Rayleigh losses dominates over cloud losses. We calculate the optimum signal-to-noise ratio for spectral features in the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star and also M stars, for a 6.5-m telescope in space. We find that the signal to noise values for all important spectral features are on the order of unity or less per transit - except for the closest stars - making it difficult to detect such features in one single transit, and implying that co-adding of many transits will be essential.
We have developed a new method to improve the transit detection of Earth-sized planets in front of solar-like stars by fitting stellar microvariability by means of a spot model. A large Monte Carlo numerical experiment has been designed to test the p erformance of our approach in comparison with other variability filters and fitting techniques for stars of different magnitudes and planets of different radius and orbital period, as observed by the space missions CoRoT and Kepler. Here we report on the results of this experiment.
We have extended the ANTARES code to simulate the coupling of pulsation with convection in Cepheid-like variables in an increasingly realistic way, in particular in multidimensions, 2D at this stage. Present days models of radially pulsating stars as sume radial symmetry and have the pulsation-convection interaction included via model equations containing ad hoc closures and moreover parameters whose values are barely known. We intend to construct ever more realistic multidimensional models of Cepheids. In the present paper, the first of a series, we describe the basic numerical approach and how it is motivated by physical properties of these objects which are sometimes more, sometimes less obvious. - For the construction of appropriate models a polar grid co-moving with the mean radial velocity has been introduced to optimize radial resolution throughout the different pulsation phases. The grid is radially stretched to account for the change of spatial scales due to vertical stratification and a new grid refinement scheme is introduced to resolve the upper, hydrogen ionisation zone where the gradient of temperature is steepest. We demonstrate that the simulations are not conservative when the original weighted essentially non-oscillatory method implemented in ANTARES is used and derive a new scheme which allows a conservative time evolution. The numerical approximation of diffusion follows the same principles. Moreover, the radiative transfer solver has been modified to improve the efficiency of calculations on parallel computers. We show that with these improvements the ANTARES code can be used for realistic simulations of the convection-pulsation interaction in Cepheids. We discuss the properties of several models which include the upper 42% of a Cepheid along its radial coordinate, assume different opening angles, and are suitable for an in-depth study of convection and pulsation.
237 - B. Ercolano 2002
The three-dimensional Monte Carlo photoionization code Mocassin has been applied to construct a realistic model of the planetary nebula NGC 3918. Three different geometric models were tried. The effects of the interaction of the diffuse fields comi ng from two adjacent regions of different densities were investigated. These are found to be non-negligible, even for the relatively uncomplicated case of a biconical geometry. We found that the ionization structure of low ionization species near the boundaries is particularly affected. It is found that all three models provided acceptable matches to the integrated nebular optical and ultraviolet spectrum. Large discrepancies were found between all of the model predictions of infrared fine-structure line fluxes and ISO SWS measurements. This was found to be largely due to an offset of ~14 arcsec from the centre of the nebula that affected all of the ISO observations of NGC 3918. For each model, we also produced projected emission-line maps and position-velocity diagrams from synthetic long-slit spectra, which could be compared to recent HST images and ground-based long-slit echelle spectra. This comparison showed that spindle-like model B provided the best match to the observations. We have therefore shown that although the integrated emission line spectrum of NGC 3918 can be reproduced by all three of the three-dimensional models investigated in this work, the capability of creating projected emission-line maps and position-velocity diagrams from synthetic long-slit spectra was crucial in allowing us to constrain the structure of this object.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا