ﻻ يوجد ملخص باللغة العربية
The recently discovered $X$(3872) has many possible interpretations. We study the production of $X$(3872) with PANDA at GSI for the antiproton-proton collision with two possible interpretations of X(3872). One is as a loosely-bound molecule of $D$-mesons, while another is a 2P charmonium state $chi_{c1}$ (2P). Using effective couplings we are able to give numerical predictions for the production near the threshold and the production associated with $pi^0$. The produced $X$(3872) can be identified with its decay $J/psi pi^+pi^-$. We also study the possible background near the threshold production for $X(3872) to J/psi pi^+pi^-$. With the designed luminosity $1.5{rm fb}^{-1}$ per year of PANDA we find that the event number of $pbar p to J/psi pi^+pi^-$ near the threshold is at the order of $10^6 sim 10^8$, where the large uncertainty comes from the total decay width of X(3872). Our study shows that at the threshold more than about 60% events come from the decay of X(3872) and two interpretations are distinguishable from the line-shape of the production. With our results we except that the PANDA experiments will shed light on the property of X(3872).
Monte-Carlo simulations for a resonance scan of the charmonium-like state X(3872) at Panda are performed. Final state radiation hadronic background reactions are taken into account. The signal reconstruction uses a realistic pattern recognition (trac
We evaluate the production cross sections of $X(3872)$ at the LHC and Tevatron at NLO in $alpha_s$ in NRQCD by assuming that the short-distance production proceeds dominantly through its $chi_{c1}$ component in our $chi_{c1}mbox{-}D^0bar{D}^{*0}$ mix
The production of the X(3872) as a hadronic molecule in hadron colliders is clarified. We show that the conclusion of Bignamini et al., Phys. Rev. Lett. 103 (2009) 162001, that the production of the X(3872) at high $p_T$ implies a non-molecular struc
We discuss the possibilities of producing the X(3872), which is assumed to be a D bar D^* bound state, in radiative decays of charmonia. We argue that the ideal energy regions to observe the X(3872) associated with a photon in e^+e^- annihilations ar
Heavy ion collisions provide a unique opportunity to study the nature of X(3872) compared with electron-positron and proton-proton (antiproton) collisions. With the abundant charm pairs produced in heavy-ion collisions, the production of multicharm h