ﻻ يوجد ملخص باللغة العربية
We determine the two-point invariants of the equivariant quantum cohomology of the Hilbert scheme of points of surface resolutions associated to type A_n singularities. The operators encoding these invariants are expressed in terms of the action of the affine Lie algebra hat{gl}(n+1) on its basic representation. Assuming a certain nondegeneracy conjecture, these operators determine the full structure of the quantum cohomology ring. A relationship is proven between the quantum cohomology and Gromov-Witten/Donaldson-Thomas theories of A_n x P^1. We close with a discussion of the monodromy properties of the associated quantum differential equation and a generalization to singularities of type D and E.
Recently, Herbig--Schwarz--Seaton have shown that $3$-large representations of a reductive group $G$ give rise to a large class of symplectic singularities via Hamiltonian reduction. We show that these singularities are always terminal. We show that
We study the relative Donaldson-Thomas theory of A_n x P^1, where A_n is the surface resolution of a type A_n singularity. The action of divisor operators in the theory is expressed in terms of operators of the affine algebra hat{gl}(n+1) on Fock spa
In this article we consider the connected component of the identity of $G$-character varieties of compact Riemann surfaces of genus $g > 0$, for connected complex reductive groups $G$ of type $A$ (e.g., $SL_n$ and $GL_n$). We show that these varietie
In this paper we compute the cohomology of the Fano varieties of $k$-planes in the smooth complete intersection of two quadrics in $mathbb{P}^{2g+1}$, using Springer theory for symmetric spaces.
We give a notion of combinatorial proximity among strongly stable ideals in a given polynomial ring with a fixed Hilbert polynomial. We show that this notion guarantees geometric proximity of the corresponding points in the Hilbert scheme. We define