ﻻ يوجد ملخص باللغة العربية
The critical behaviour of d-dimensional n-vector models at m-axial Lifshitz points is considered for general values of m in the large-n limit. It is proven that the recently obtained large-N expansions [J. Phys.: Condens. Matter 17, S1947 (2005)] of the correlation exponents eta_{L2}, eta_{L4} and the related anisotropy exponent theta are fully consistent with the dimensionality expansions to second order in epsilon=4+m/2-d [Phys. Rev. B 62, 12338 (2000); Nucl. Phys. B 612, 340 (2001)] inasmuch as both expansions yield the same contributions of order epsilon^2/n.
The critical behavior of d-dimensional systems with an n-component order parameter is reconsidered at (m,d,n)-Lifshitz points, where a wave-vector instability occurs in an m-dimensional subspace of ${mathbb R}^d$. Our aim is to sort out which ones of
The large-n expansion is developed for the study of critical behaviour of d-dimensional systems at m-axial Lifshitz points with an arbitrary number m of modulation axes. The leading non-trivial contributions of O(1/n) are derived for the two independ
An introduction to the theory of critical behavior at Lifshitz points is given, and the recent progress made in applying the field-theoretic renormalization group (RG) approach to $phi^4$ $n$-vector models representing universality classes of $m$-axi
We investigate the critical behavior that d-dimensional systems with short-range forces and a n-component order parameter exhibit at Lifshitz points whose wave-vector instability occurs in a m-dimensional isotropic subspace of ${mathbb R}^d$. Utilizi
The critical behaviour of semi-infinite $d$-dimensional systems with short-range interactions and an O(n) invariant Hamiltonian is investigated at an $m$-axial Lifshitz point with an isotropic wave-vector instability in an $m$-dimensional subspace of