ﻻ يوجد ملخص باللغة العربية
This paper reviews some of the observational properties of globular cluster systems, with a particular focus on those that constrain and inform models of the formation and dynamical evolution of globular cluster systems. I first discuss the observational determination of the globular cluster luminosity and mass function. I show results from new very deep HST data on the M87 globular cluster system, and discuss how these constrain models of evaporation and the dynamical evolution of globular clusters. The second subject of this review is the question of how to account for the observed constancy of the globular cluster mass function with distance from the center of the host galaxy. The problem is that a radial trend is expected for isotropic cluster orbits, and while the orbits are observed to be roughly isotropic, no radial trend in the globular cluster system is observed. I review three extant proposals to account for this, and discuss observations and calculations that might determine which of these is most correct. The final subject is the origin of the very weak mass-radius relation observed for globular clusters. I discuss how this strongly constrains how globular clusters form and evolve. I also note that the only viable current proposal to account for the observed weak mass-radius relation naturally affects the globular cluster mass function, and that these two problems may be related.
Due to its proximity, the Milky Way nuclear star cluster provides us with a wealth of data not available in other galactic nuclei. In particular, with adaptive optics, we can observe the detailed properties of individual stars, which can offer insigh
Globular clusters are compact, gravitationally bound systems of up to a million stars. The GCs in the Milky Way contain some of the oldest stars known, and provide important clues to the early formation and continuing evolution of our Galaxy. More ge
We present spectroscopic ages, metallicities, and [alpha/Fe] ratios for 70 globular clusters in M31 that were derived from Lick line-index measurements. In addition to a population of old (>10 Gyr) globular clusters with a wide range of metallicities
We present new multiband photometry for the Galactic globular cluster IC 4499 extending well past the main sequence turn-off in the U, B, V, R, I, and DDO51 bands. This photometry is used to determine that IC4499 has an age of 12 pm 1 Gyr and a clust
The discovery of proto-globular cluster candidates in many current-day mergers allows us to better understand the possible effects of a merger event on the globular cluster system of a galaxy, and to foresee the properties of the end-product. By comp