ترغب بنشر مسار تعليمي؟ اضغط هنا

On the $ell_1-ell_q$ Regularized Regression

19   0   0.0 ( 0 )
 نشر من قبل Han Liu
 تاريخ النشر 2008
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider the problem of grouped variable selection in high-dimensional regression using $ell_1-ell_q$ regularization ($1leq q leq infty$), which can be viewed as a natural generalization of the $ell_1-ell_2$ regularization (the group Lasso). The key condition is that the dimensionality $p_n$ can increase much faster than the sample size $n$, i.e. $p_n gg n$ (in our case $p_n$ is the number of groups), but the number of relevant groups is small. The main conclusion is that many good properties from $ell_1-$regularization (Lasso) naturally carry on to the $ell_1-ell_q$ cases ($1 leq q leq infty$), even if the number of variables within each group also increases with the sample size. With fixed design, we show that the whole family of estimators are both estimation consistent and variable selection consistent under different conditions. We also show the persistency result with random design under a much weaker condition. These results provide a unified treatment for the whole family of estimators ranging from $q=1$ (Lasso) to $q=infty$ (iCAP), with $q=2$ (group Lasso)as a special case. When there is no group structure available, all the analysis reduces to the current results of the Lasso estimator ($q=1$).

قيم البحث

اقرأ أيضاً

This paper develops a novel stochastic tree ensemble method for nonlinear regression, which we refer to as XBART, short for Accelerated Bayesian Additive Regression Trees. By combining regularization and stochastic search strategies from Bayesian mod eling with computationally efficient techniques from recursive partitioning approaches, the new method attains state-of-the-art performance: in many settings it is both faster and more accurate than the widely-used XGBoost algorithm. Via careful simulation studies, we demonstrate that our new approach provides accurate point-wise estimates of the mean function and does so faster than popular alternatives, such as BART, XGBoost and neural networks (using Keras). We also prove a number of basic theoretical results about the new algorithm, including consistency of the single tree version of the model and stationarity of the Markov chain produced by the ensemble version. Furthermore, we demonstrate that initializing standard Bayesian additive regression trees Markov chain Monte Carlo (MCMC) at XBART-fitted trees considerably improves credible interval coverage and reduces total run-time.
Online forecasting under a changing environment has been a problem of increasing importance in many real-world applications. In this paper, we consider the meta-algorithm presented in citet{zhang2017dynamic} combined with different subroutines. We sh ow that an expected cumulative error of order $tilde{O}(n^{1/3} C_n^{2/3})$ can be obtained for non-stationary online linear regression where the total variation of parameter sequence is bounded by $C_n$. Our paper extends the result of online forecasting of one-dimensional time-series as proposed in cite{baby2019online} to general $d$-dimensional non-stationary linear regression. We improve the rate $O(sqrt{n C_n})$ obtained by Zhang et al. 2017 and Besbes et al. 2015. We further extend our analysis to non-stationary online kernel regression. Similar to the non-stationary online regression case, we use the meta-procedure of Zhang et al. 2017 combined with Kernel-AWV (Jezequel et al. 2020) to achieve an expected cumulative controlled by the effective dimension of the RKHS and the total variation of the sequence. To the best of our knowledge, this work is the first extension of non-stationary online regression to non-stationary kernel regression. Lastly, we evaluate our method empirically with several existing benchmarks and also compare it with the theoretical bound obtained in this paper.
Single index models provide an effective dimension reduction tool in regression, especially for high dimensional data, by projecting a general multivariate predictor onto a direction vector. We propose a novel single-index model for regression models where metric space-valued random object responses are coupled with multivariate Euclidean predictors. The responses in this regression model include complex, non-Euclidean data, including covariance matrices, graph Laplacians of networks, and univariate probability distribution functions among other complex objects that lie in abstract metric spaces. Frechet regression has provided an approach for modeling the conditional mean of such random objects given multivariate Euclidean vectors, but it does not provide for regression parameters such as slopes or intercepts, since the metric space-valued responses are not amenable to linear operations. We show here that for the case of multivariate Euclidean predictors, the parameters that define a single index and associated projection vector can be used to substitute for the inherent absence of parameters in Frechet regression. Specifically, we derive the asymptotic consistency of suitable estimates of these parameters subject to an identifiability condition. Consistent estimation of the link function of the single index Frechet regression model is obtained through local Frechet regression. We demonstrate the finite sample performance of estimation for the proposed single index Frechet regression model through simulation studies, including the special cases of probability distributions and graph adjacency matrices. The method is also illustrated for resting-state functional Magnetic Resonance Imaging (fMRI) data from the ADNI study.
This paper investigates the high-dimensional linear regression with highly correlated covariates. In this setup, the traditional sparsity assumption on the regression coefficients often fails to hold, and consequently many model selection procedures do not work. To address this challenge, we model the variations of covariates by a factor structure. Specifically, strong correlations among covariates are explained by common factors and the remaining variations are interpreted as idiosyncratic components of each covariate. This leads to a factor-adjusted regression model with both common factors and idiosyncratic components as covariates. We generalize the traditional sparsity assumption accordingly and assume that all common factors but only a small number of idiosyncratic components contribute to the response. A Bayesian procedure with a spike-and-slab prior is then proposed for parameter estimation and model selection. Simulation studies show that our Bayesian method outperforms its lasso analogue, manifests insensitivity to the overestimates of the number of common factors, pays a negligible price in the no correlation case, and scales up well with increasing sample size, dimensionality and sparsity. Numerical results on a real dataset of U.S. bond risk premia and macroeconomic indicators lend strong support to our methodology.
A continuous-time nonlinear regression model with Levy-driven linear noise process is considered. Sufficient conditions of consistency and asymptotic normality of the Whittle estimator for the parameter of the noise spectral density are obtained in the paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا