ﻻ يوجد ملخص باللغة العربية
The diffusion process of N hard rods in a 1D interval of length L (--> inf) is studied using scaling arguments and an asymptotic analysis of the exact N-particle probability density function (PDF). In the class of such systems, the universal scaling law of the tagged particles mean absolute displacement reads, <|r|>~ <|r|>_{free}/n^mu, where <|r|>_{free} is the result for a free particle in the studied system and n is the number of particles in the covered length. The exponent mu is given by, mu=1/(1+a), where a is associated with the particles density law of the system, rho~rho_0*L^(-a), 0<= a <=1. The scaling law for <|r|> leads to, <|r|>~rho_0^((a-1)/2) (<|r| >_{free})^((1+a)/2), an equation that predicts a smooth interpolation between single file diffusion and free particle diffusion depending on the particles density law, and holds for any underlying dynamics. In particular, <|r|>~t^((1+a)/2) for normal diffusion, with a Gaussian PDF in space for any value of a (deduced by a complementary analysis), and, <|r|>~t^((beta(1+a))/2), for anomalous diffusion in which the systems particles all have the same power-law waiting time PDF for individual events, psi~t^(-1-beta), 0<beta<1. Our analysis shows that the scaling <|r|>~t^(1/2) in a standard single file is a direct result of the fixed particles density condition imposed on the system, a=0.
Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount quantifying the escape time needed for single files of particles to exit from constraining
We study propagation dynamics of a particle phase in a single-file pore connected to a reservoir of particles (bulk liquid phase). We show that the total mass $M(t)$ of particles entering the pore up to time $t$ grows as $M(t) = 2 m(J,rho_F) sqrt{D_0
We study the statistics of a tagged particle in single-file diffusion, a one-dimensional interacting infinite-particle system in which the order of particles never changes. We compute the two-time correlation function for the displacement of the tagg
Normal dynamics in a quasi-one-dimensional channel of length L (toinfty) of N hard spheres are analyzed. The spheres are heterogeneous: each has a diffusion coefficient D that is drawn from a probability density function (PDF), W D^(-{gamma}), for sm
In this work, we present an effective discrete Edwards-Wilkinson equation aimed to describe the single-file diffusion process. The key physical properties of the system are captured defining an effective elasticity, which is proportional to the singl