ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of pulsars at 9 millimetres

40   0   0.0 ( 0 )
 نشر من قبل Michael Kramer
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O. Loehmer




اسأل ChatGPT حول البحث

The behaviour of the pulsar spectrum at high radio frequencies can provide decisive information about the nature of the radio emission mechanism. We report recent observations of a selected sample of pulsars at lambda=9mm (32 GHz) with the 100-m Effelsberg radio telescope.Three pulsars, PSR B0144+59, PSR B0823+26, and PSR B2022+50, were detected for the first time at this frequency. We confirm the earlier flux density measurements for a sample of six pulsars, and we are able to place upper flux density limits for another 12 pulsars. We find that all pulsar spectra have a simple form that can be described using only three parameters, one of which is the lifetime of short nano-pulses in the emission region.The study of the transition region from coherent to incoherent emission needs further and more sensitive observations at even higher radio frequencies.

قيم البحث

اقرأ أيضاً

Integrated pulse profiles at 8.6~GHz obtained with the Shanghai Tian Ma Radio Telescope (TMRT) are presented for a sample of 26 pulsars. Mean flux densities and pulse width parameters of these pulsars are estimated. For eleven pulsars these are the f irst high-frequency observations and for a further four, our observations have a better signal-to-noise ratio than previous observations. For one (PSR J0742-2822) the 8.6~GHz profiles differs from previously observed profiles. A comparison of 19 profiles with those at other frequencies shows that in nine cases the separation between the outmost leading and trailing components decreases with frequency, roughly in agreement with radius-to-frequency mapping, whereas in the other ten the separation is nearly constant. Different spectral indices of profile components lead to the variation of integrated pulse profile shapes with frequency. In seven pulsars with multi-component profiles, the spectral indices of the central components are steeper than those of the outer components. For the 12 pulsars with multi-component profiles in the high-frequency sample, we estimate the core width using gaussian fitting and discuss the width-period relationship.
37 - N. Wang 2005
From 2001 January to 2002 June, we monitored PSRs B0329+54, B0823+26, B1929+10, B2020+28 and B2021+51 using the Nanshan 25-m radio telescope of Urumqi Observatory to study their diffractive interstellar scintillation (DISS). The average interval betw een observations was about 9 days and the observation duration ranged between 2 and 6 hours depending on the pulsar. Wide variations in the DISS parameters were observed over the 18-month data span. Despite this, the average scintillation velocities are in excellent agreement with the proper motion velocities. The average two-dimensional autocorrelation function for PSR B0329+54 is well described by a thin-screen Kolmogorov model, at least along the time and frequency axes. Observed modulation indices for the DISS time scale and bandwidth and the pulsar flux density are greater than values predicted for a Kolmogorov spectrum of electron density fluctuations. Correlated variations over times long compared to the nominal refractive scintillation time are observed, suggesting that larger-scale density fluctuations are important. For these pulsars, the scintillation bandwidth as a function of frequency has a power-law index (~3.6) much less than expected for Kolmogorov turbulence (~4.4). Sloping fringes are commonly observed in the dynamic spectra, especially for PSR B0329+54. The detected range of fringe slopes are limited by our observing resolution. Our observations are sensitive to larger-scale fringes and hence smaller refractive angles, corresponding to the central part of the scattering disk.
Polarization profiles are presented for 20 millisecond pulsars that are being observed as part of the Parkes Pulsar Timing Array project. The observations used the Parkes multibeam receiver with a central frequency of 1369 MHz and the Parkes digital filterbank pulsar signal-processing system PDFB2. Because of the large total observing time, the summed polarization profiles have very high signal/noise ratios and show many previously undetected profile features. Thirteen of the 20 pulsars show emission over more than half of the pulse period. Polarization variations across the profiles are complex and the observed position angle variations are generally not in accord with the rotating-vector model for pulsar polarization. Never-the-less, the polarization properties are broadly similar to those of normal (non-millisecond) pulsars, suggesting that the basic radio emission mechanism is the same in both classes of pulsar. The results support the idea that radio emission from millisecond pulsars originates high in the pulsar magnetosphere, probably close to the emission regions for high-energy X-ray and gamma-ray emission. Rotation measures were obtained for all 20 pulsars, eight of which had no previously published measurements.
61 - Kenneth C. Wong 2017
We present long-baseline ALMA observations of the strong gravitational lens H-ATLAS J090740.0-004200 (SDP.9), which consists of an elliptical galaxy at $z_{mathrm{L}}=0.6129$ lensing a background submillimeter galaxy into two extended arcs. The data include Band 6 continuum observations, as well as CO $J$=6$-$5 molecular line observations, from which we measure an updated source redshift of $z_{mathrm{S}}=1.5747$. The image morphology in the ALMA data is different from that of the HST data, indicating a spatial offset between the stellar, gas, and dust component of the source galaxy. We model the lens as an elliptical power law density profile with external shear using a combination of archival HST data and conjugate points identified in the ALMA data. Our best model has an Einstein radius of $theta_{mathrm{E}}=0.66pm0.01$ and a slightly steeper than isothermal mass profile slope. We search for the central image of the lens, which can be used constrain the inner mass distribution of the lens galaxy including the central supermassive black hole, but do not detect it in the integrated CO image at a 3$sigma$ rms level of 0.0471 Jy km s$^{-1}$.
We describe the first X-ray observations of five short orbital period ($P_B < 1$ day), $gamma$-ray emitting, binary millisecond pulsars. Four of these, PSRs J0023+0923, J1124$-$3653, J1810+1744, and J2256$-$1024 are `black-widow pulsars, with degener ate companions of mass $ll0.1 M_{odot}$, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing `redback with a near Roche-lobe filling $sim$0.2 solar mass non-degenerate companion. Data were taken using the textit{Chandra X-Ray Observatory} and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256$-$1024, show significant orbital variability while PSR J1124$-$3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission and is similar to what has been detected in the low-mass X-ray binary to millisecond pulsar transition object PSR J1023+0038.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا