ﻻ يوجد ملخص باللغة العربية
We present a new measurement of the scaling relation between X-ray luminosity and total mass for 17,000 galaxy clusters in the maxBCG cluster sample. Stacking sub-samples within fixed ranges of optical richness, N_200, we measure the mean 0.1-2.4 keV X-ray luminosity, <L_X>, from the ROSAT All-Sky Survey. The mean mass, <M_200>, is measured from weak gravitational lensing of SDSS background galaxies (Johnston et al. 2007). For 9 <= N_200 < 200, the data are well fit by a power-law, <L_X>/10^42 h^-2 erg/s = (12.6+1.4-1.3 (stat) +/- 1.6 (sys)) (<M_200>/10^14 h^-1 M_sun)^1.65+/-0.13. The slope agrees to within 10% with previous estimates based on X-ray selected catalogs, implying that the covariance in L_X and N_200 at fixed halo mass is not large. The luminosity intercent is 30%, or 2sigma, lower than determined from the X-ray flux-limited sample of Reiprich & Bohringer (2002), assuming hydrostatic equilibrium. This difference could arise from a combination of Malmquist bias and/or systematic error in hydrostatic mass estimates, both of which are expected. The intercept agrees with that derived by Stanek et al. (2006) using a model for the statistical correspondence between clusters and halos in a WMAP3 cosmology with power spectrum normalization sigma_8 = 0.85. Similar exercises applied to future data sets will allow constraints on the covariance among optical and hot gas properties of clusters at fixed mass.
In this paper based on ROSAT/PSPC data we investigate the emission measure profiles of a sample of hot clusters of galaxies (kT>3.5keV) in order to explain the differences between observed and theoretically predicted L_X-T relation. Looking at the fo
The nonthermal phenomena in clusters of galaxies are considered in the context of the hierarchical model of cosmic structure formation by accretion and merging of the dark matter (DM) substructures.Accretion and merging processes produce large-scale
The relation between X-ray luminosity (L_X) and ambient gas temperature (T) among massive galactic systems is an important cornerstone of both observational cosmology and galaxy-evolution modeling. In the most massive galaxy clusters, the relation is
Some previous investigations have found that the fraction (f_AGN) of active galactic nuclei (AGNs) is lower in clusters than in the field. This can result from the suppression of galaxy-galaxy mergers in high-velocity dispersion (sigma_v) clusters, i
The relation between a cosmological halo concentration and its mass (cMr) is a powerful tool to constrain cosmological models of halo formation and evolution. On the scale of galaxy clusters the cMr has so far been determined mostly with X-ray and gr