ترغب بنشر مسار تعليمي؟ اضغط هنا

The VIMOS VLT Deep Survey: The K-band follow-up in the 0226-04 field

155   0   0.0 ( 0 )
 نشر من قبل Sonia Giovanna Temporin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

AIMS. We present a new Ks-band survey that represents a significant extension to the previous wide-field Ks-band imaging survey within the 0226-04 field of the VIMOS-VLT deep survey (VVDS). The new data add ~ 458 arcmin^2 to the previous imaging program, thus allowing us to cover a total contiguous area of ~ 600 arcmin^2 within this field. METHODS. Sources are identified both directly on the final K-band mosaic image and on the corresponding, deep chi^2-gri image from the CFHT Legacy Survey in order to reduce contamination while ensuring us the compilation of a truly K-selected catalogue down to the completeness limit of the Ks-band. The newly determined Ks-band magnitudes are used in combination with the ancillary multiwavelength data for the determination of accurate photometric redshifts. RESULTS. The final catalogue totals ~ 52000 sources, out of which ~ 4400 have a spectroscopic redshift from the VVDS first epoch survey. The catalogue is 90% complete down to K_Vega = 20.5 mag. We present K_s-band galaxy counts and angular correlation function measurements down to such magnitude limit. Our results are in good agreement with previously published work. We show that the use of K magnitudes in the determination of photometric redshifts significantly lowers the incidence of catastrophic errors. The data presented in this paper are publicly available through the CENCOS database.


قيم البحث

اقرأ أيضاً

[Abridged] We present a homogeneous and complete catalogue of optical groups identified in the purely flux limited (17.5<=I<=24.0) VIMOS-VLT Deep Survey (VVDS). We use mock catalogues extracted from the MILLENNIUM simulation, to correct for potential systematics that might affect the overall distribution as well as the individual properties of the identified systems. Simulated samples allow us to forecast the number and properties of groups that can be potentially found in a survey with VVDS-like selection functions. We use them to correct for the expected incompleteness and also to asses how well galaxy redshifts trace the line-of-sight velocity dispersion of the underlying mass overdensity. In particular, we train on these mock catalogues the adopted group-finding technique (the Voronoi-Delaunay Method, VDM). The goal is to fine-tune its free parameters, recover in a robust and unbiased way the redshift and velocity dispersion distributions of groups and maximize the level of completeness (C) and purity (P) of the group catalogue. We identify 318 VVDS groups with at least 2 members within 0.2<=z<=1.0, among which 144 (/30) with at least 3 (/5) members. The sample has globally C=60% and P=50%. Nearly 45% of the groups with at least 3 members are still recovered if we run the algorithm with a parameter set which maximizes P (75%). We exploit the group sample to study the redshift evolution of the fraction f_b of blue galaxies (U-B<=1) within 0.2<=z<=1. We find that f_b is significantly lower in groups than in the whole ensemble of galaxies irrespectively of their environment. These quantities increase with redshift, with f_b in groups showing a marginally significant steeper increase. We also confirm that, at any explored redshift, f_b decreases for increasing group richness, and we extend towards fainter luminosities the magnitude range over which this result holds.
We present the first results of the VIsible Multiobject Spectrograph (VIMOS) ESO/GOODS program of spectroscopy of faint galaxies in the Chandra Deep Field South (CDF-S). The program complements the FORS2 ESO/GOODS campaign. 3312 spectra have been obt ained in service mode with VIMOS at the ESO/VLT UT3. The VIMOS LR-Blue and MR grisms have been used to cover different redshift ranges. Galaxies at 1.8 < z < 3.5 have been observed in the GOODS VIMOS-LR-Blue campaign. Galaxies at z < 1 and Lyman Break Galaxies at z > 3.5 have been observed in the VIMOS MR survey. Here we report results for the first 6 masks (out of 10 total) that have been analyzed from each of the LR-Blue and MR grisms. Spectra of 2344 spectra have been extracted from these 6 LR-Blue masks and 968 from 6 MR masks. 33% of the LR-Blue and 18% of the MR spectra are serendipitous observations. We obtained 1481 redshifts in the LR-Blue campaign and 656 in the MR campaign for a total success rate of 63% and 68%, respectively, which increase to 70% and 75% when only the primary targets are considered. By complementing our VIMOS spectroscopic catalog with all existing spectroscopic redshifts publicly available in the CDF-S, we created a redshift master catalog. By comparing this redshift compilation with different photometric redshift catalogs we estimate the completeness level of the CDF-S spectroscopic coverage in several redshift bins. The completeness level is very high, > 60%, at z < 3.5, and it is very uncertain at higher redshift. The master catalog has been used also to estimate completeness and contamination levels of different galaxy photometric selection techniques, such as the BzK, the so called sub-U-dropout and the drop-out methods and to identify large scale structures in the field.
We present the first measurements of the Probability Distribution Function (PDF) of galaxy fluctuations in the VIMOS-VLT Deep Survey (VVDS) cone, covering 0.4x0.4 deg between 0.4<z<1.5. The second moment of the PDF, i.e. the rms fluctuations of the g alaxy density field, is with good approximation constant over the full redshift baseline investigated: we find that, in redshift space, sigma_8 for galaxies brighter than M=-20+5log h has a mean value of 0.94pm0.07 in the redshift interval 0.7<z<1.5. The third moment, i.e. the skewness, increases with cosmic time: we find that the probability of having underdense regions is greater at z~0.7 than it was at z~1.5. By comparing the PDF of galaxy density contrasts with the theoretically predicted PDF of mass fluctuations we infer the redshift-, density-, and scale-dependence of the biasing function b(z, delta, R) between galaxy and matter overdensities up to redshift z=1.5. Our results can be summarized as follows: i) the galaxy bias is an increasing function of redshift: evolution is marginal up to z~0.8 and more pronounced for z>0.8; ii) the formation of bright galaxies is inhibited below a characteristic mass-overdensity threshold whose amplitude increases with redshift and luminosity; iii) the biasing function is non linear in all the redshift bins investigated with non-linear effects of the order of a few to 10% on scales >5Mpc.
We present the type-1 active galactic nuclei (AGN) sample extracted from the VIMOS VLT Deep Survey first observations of 21000 spectra in 1.75 square degree. This sample, which is purely magnitude limited, free of morphological or color selection bia ses, contains 130 broad line AGN (BLAGN) spectra with redshift up to 5. Our data are divided into a wide (Iab < 22.5) and a deep (Iab < 24) subsample containing 56 and 74 objects respectively. Because of its depth and selection criteria, this sample is uniquely suited to study the population of faint type-1 AGN. Our measured surface density (~ 472 +- 48 BLAGN per square degree with Iab < 24) is significantly higher than that of any other optically selected sample of BLAGN with spectroscopic confirmation. By applying a morphological and color analysis to our AGN sample we find that: (1)~23% of the AGN brighter than Iab=22.5 are classified as extended; this percentage increases to ~42% for those with z < 1.6; (2) a non-negligible fraction of our BLAGN are lying close to the color space area occupied by stars in u*-g versus g-r color-color diagram. This leads us to the conclusion that classical optical ultraviolet preselection technique, if employed at such deep magnitudes (Iab=22.5) in conjuction with a preselection of point-like sources, can miss miss up to ~35% of the AGN population. Finally, we present a composite spectrum of our sample of objects. While the continuum shape is very similar to that of the SDSS composite at short wavelengths, it is much redder than it at lambda > 3000 A. We interpret this as due to significant contamination from emission of the host galaxies, as expected from the faint absolute magnitudes sampled by our survey.
We measure the evolution of the galaxy Luminosity Function as a function of large-scale environment up to z=1.5 from the VIMOS-VLT Deep Survey (VVDS) first epoch data. The 3D galaxy density field is reconstructed using a sample of 6582 galaxies with 17.5 < I_{AB} < 24 and measured spectroscopic redshifts. We split the sample in four redshift bins up to z=1.5 and in under-dense and over-dense environments according to the average density contrast delta=0. There is a strong dependence of the Luminosity Function (LF) with large-scale environment up to z=1.2: the LF shape is observed to have a steeper slope in under-dense environments. We find a continuous brightening of Delta M* ~0.6 mag from z=0.25 to z=1.5 both in under-dense and over-dense environments. The rest-frame B-band luminosity density continuously increases in under-dense environments from z=0.25 to z=1.5 whereas its evolution in over-dense environments presents a peak at z~0.9. We interpret the peak by a complex interplay between the decrease of the star formation rate and the increasing fraction of galaxies at delta>0 due to hierarchical growth of structures. As the environmental dependency of the LF shape is already present at least up to z=1.2, we therefore conclude that either the shape of the LF is imprinted very early on in the life of the Universe, a `nature process, or that `nurture physical processes shaping up environment relation have already been efficient earlier than a look-back time corresponding to 30% of the current age of the Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا