ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbo Interleaving inside the cdma2000 and W-CDMA Mobile Communication Systems: A Tutorial

87   0   0.0 ( 0 )
 نشر من قبل Fabio G. Guerrero Moreno
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper a discussion of the detailed operation of the interleavers used by the turbo codes defined on the telecommunications standards cdma2000 (3GPP2 C.S0024-B V2.0) and W-CDMA (3GPP TS 25.212 V7.4.0) is presented. Differences in the approach used by each turbo interleaver as well as dispersion analysis and frequency analysis are also discussed. Two examples are presented to illustrate the complete interleaving process defined by each standard. These two interleaving approaches are also representative for other communications standards.

قيم البحث

اقرأ أيضاً

This paper presents the FPGA hardware design of a turbo decoder for the cdma2000 standard. The work includes a study and mathematical analysis of the turbo decoding process, based on the MAX-Log-MAP algorithm. Results of decoding for a packet size of two hundred fifty bits are presented, as well as an analysis of area versus performance, and the key variables for hardware design in turbo decoding.
Spectral efficiency for asynchronous code division multiple access (CDMA) with random spreading is calculated in the large system limit allowing for arbitrary chip waveforms and frequency-flat fading. Signal to interference and noise ratios (SINRs) f or suboptimal receivers, such as the linear minimum mean square error (MMSE) detectors, are derived. The approach is general and optionally allows even for statistics obtained by under-sampling the received signal. All performance measures are given as a function of the chip waveform and the delay distribution of the users in the large system limit. It turns out that synchronizing users on a chip level impairs performance for all chip waveforms with bandwidth greater than the Nyquist bandwidth, e.g., positive roll-off factors. For example, with the pulse shaping demanded in the UMTS standard, user synchronization reduces spectral efficiency up to 12% at 10 dB normalized signal-to-noise ratio. The benefits of asynchronism stem from the finding that the excess bandwidth of chip waveforms actually spans additional dimensions in signal space, if the users are de-synchronized on the chip-level. The analysis of linear MMSE detectors shows that the limiting interference effects can be decoupled both in the user domain and in the frequency domain such that the concept of the effective interference spectral density arises. This generalizes and refines Tse and Hanlys concept of effective interference. In Part II, the analysis is extended to any linear detector that admits a representation as multistage detector and guidelines for the design of low complexity multistage detectors with universal weights are provided.
Totally asynchronous code-division multiple-access (CDMA) systems are addressed. In Part I, the fundamental limits of asynchronous CDMA systems are analyzed in terms of spectral efficiency and SINR at the output of the optimum linear detector. The fo cus of Part II is the design of low-complexity implementations of linear multiuser detectors in systems with many users that admit a multistage representation, e.g. reduced rank multistage Wiener filters, polynomial expansion detectors, weighted linear parallel interference cancellers. The effects of excess bandwidth, chip-pulse shaping, and time delay distribution on CDMA with suboptimum linear receiver structures are investigated. Recursive expressions for universal weight design are given. The performance in terms of SINR is derived in the large-system limit and the performance improvement over synchronous systems is quantified. The considerations distinguish between two ways of forming discrete-time statistics: chip-matched filtering and oversampling.
In CDMA systems, the received user powers vary due to moving distance of users. Thus, the CDMA receivers consist of two stages. The first stage is the power estimator and the second one is a Multi-User Detector (MUD). Conventional methods for estimat ing the user powers are suitable for underor fully-loaded cases (when the number of users is less than or equal to the spreading gain). These methods fail to work for overloaded CDMA systems because of high interference among the users. Since the bandwidth is becoming more and more valuable, it is worth considering overloaded CDMA systems. In this paper, an optimum user power estimation for over-loaded CDMA systems with Gaussian inputs is proposed. We also introduce a suboptimum method with lower complexity whose performance is very close to the optimum one. We shall show that the proposed methods work for highly over-loaded systems (up to m(m + 1) =2 users for a system with only m chips). The performance of the proposed methods is demonstrated by simulations. In addition, a class of signature sets is proposed that seems to be optimum from a power estimation point of view. Additionally, an iterative estimation for binary input CDMA systems is proposed which works more accurately than the optimal Gaussian input method.
Computation task service delivery in a computing-enabled and caching-aided multi-user mobile edge computing (MEC) system is studied in this paper, where a MEC server can deliver the input or output datas of tasks to mobile devices over a wireless mul ticast channel. The computing-enabled and caching-aided mobile devices are able to store the input or output datas of some tasks, and also compute some tasks locally, reducing the wireless bandwidth consumption. The corresponding framework of this system is established, and under the latency constraint, we jointly optimize the caching and computing policy at mobile devices to minimize the required transmission bandwidth. The joint policy optimization problem is shown to be NP-hard, and based on equivalent transformation and exact penalization of the problem, a stationary point is obtained via concave convex procedure (CCCP). Moreover, in a symmetric scenario, gains offered by this approach are derived to analytically understand the influences of caching and computing resources at mobile devices, multicast transmission, the number of mobile devices, as well as the number of tasks on the transmission bandwidth. Our results indicate that exploiting the computing and caching resources at mobile devices can provide significant bandwidth savings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا