ﻻ يوجد ملخص باللغة العربية
We provide evidence for the existence of a {em quantum critical point} at the metallization of magnetite Fe$_{3}$O$_{4}$ at an applied pressure of $p_{c} approx 8$ GPa. We show that the present ac magnetic susceptibility data support earlier resistivity data. The Verwey temperature scales with pressure $T_{V}sim (1-p/p_{c})^{ u}$, with $ usim 1/3$. The resistivity data shows a temperature dependence $rho(T)=rho_{0}+AT^{n}$, with $nsimeq 3$ above and 2.5 at the critical pressure, respectively. This difference in $n$ with pressure is a sign of critical behavior at $p_{c}$. The magnetic susceptibility is smooth near the critical pressure, both at the Verwey transition and near the ferroelectric anomaly. A comparison with the critical behavior observed in the Mott-Hubbard and related systems is made.
We have carried out a systematic experimental investigation to address the question why thin films of Fe$_3$O$_4$ (magnetite) generally have a very broad Verwey transition with lower transition temperatures as compared to the bulk. We observed using
Results of magnetic field and temperature dependent neutron diffraction and magnetization measurements on oxy-arsenate Rb$_{2}$Fe$_{2}$O(AsO$_{4}$)$_{2}$ are reported. The crystal structure of this compound contains pseudo-one-dimensional [Fe$_{2}$O$
We study the thermally driven spin state transition in a two-orbital Hubbard model with crystal field splitting, which provides a minimal description of the physics of LaCoO3. We employ the dynamical mean-field theory with quantum Monte-Carlo impurit
We present a detailed analysis of the critical behavior close to the Mott-Anderson transition. Our findings are based on a combination of numerical and analytical results obtained within the framework of Typical-Medium Theory (TMT-DMFT) - the simples
Phase transitions are driven by collective fluctuations of a systems constituents that emerge at a critical point. This mechanism has been extensively explored for classical and quantum systems in equilibrium, whose critical behavior is described by