ﻻ يوجد ملخص باللغة العربية
We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that within the stochastic framework they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the $Delta N$ formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for the infrared cutoff would of course be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization group invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.
Superhorizon perturbations induce large-scale temperature anisotropies in the cosmic microwave background (CMB) via the Grishchuk-Zeldovich effect. We analyze the CMB temperature anisotropies generated by a single-mode adiabatic superhorizon perturba
It has been suggested that the acceleration of the Universe may be due to the backreaction of perturbations to the Friedmann-Robertson-Walker background. For a Universe dominated by cold dark matter, it is known that the backreaction of superhorizon
The spectrum of primordial fluctuations from inflation can be obtained using a mathematically controlled, and systematically extendable, uniform approximation. Closed-form expressions for power spectra and spectral indices may be found without making
We derive a closed-form, analytical expression for the spectrum of long-wavelength density perturbations in inflationary models with two (or more) inflaton degrees of freedom that is valid in the slow-roll approximation. We illustrate several classes