ﻻ يوجد ملخص باللغة العربية
The derivation of Feynman rules for unparticles carrying standard model quantum numbers is discussed. In particular, this note demonstrates that an application of Mandelstams approach to constructing a gauge-invariant action reproduces for unparticles the vertices one obtains through the usual minimal coupling scheme; other non-trivial requirements are satisfied as well. This approach is compared to an alternative method 0801.0892 that has recently been constructed by A. L. Licht.
We study gauge theories with/without an extra dimension at finite temperature, in which there are two kinds of order parameters of gauge symmetry breaking. The one is the zero mode of the gauge field for the Euclidean time direction and the other is
We calculate Lorentz-invariant and gauge-invariant quantities characterizing the product $sum_a D_R(T^a) F^a_{mu u}$, where $D_R(T^a)$ denotes the matrix for the generator $T^a$ in the representation $R=$ fundamental and adjoint, for color SU(3). We
A general procedure to describe the coupling $U_A (1) times U_B (1)$ between antisymmetric gauge fields is proposed. For vector gauge theories the inclusion of magnetic mixing in the hidden sector induces millicharges -- in principle -- observable. W
We consider the free propagation of totally symmetric massive bosonic fields in nontrivial backgrounds. The mutual compatibility of the dynamical equations and constraints in flat space amounts to the existence of an Abelian algebra formed by the dAl
A brane-world $SU(5)$ GUT model with global non-Abelian vortices is constructed in six-dimensional spacetime. We find a solution with a vortex associated to $SU(3)$ separated from another vortex associated to $SU(2)$. This $3-2$ split configuration a