ترغب بنشر مسار تعليمي؟ اضغط هنا

INTEGRAL high energy sky: The keV to MeV cosmic sources

52   0   0.0 ( 0 )
 نشر من قبل Alessandra De Rosa
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Ubertini




اسأل ChatGPT حول البحث

After almost 5 years of operation, ESAs International Gamma-Ray Astrophysics Laboratory (INTEGRAL) Space Observatory has unveiled a new soft Gamma ray sky and produced a remarkable harvest of results, ranging from identification of new high energy sources, to the discovery of dozens of variable sources to the mapping of the Aluminum emission from the Galaxy Plane to the presence of electrons and positrons generating the annihilation line in the Galaxy central radian. INTEGRAL is continuing the deep observations of the Galactic Plane and of the whole sky in the soft Gamma ray range. The new IBIS gamma ray catalogue contains more than 420 sources detected above 20 keV. We present a view of the INTEGRAL high energy sky with particular regard to sources emitting at high energy, including Active Galactic Nuclei (AGN), HESS/MAGIC counterparts and new view of the cosmic gamma ray diffuse background.

قيم البحث

اقرأ أيضاً

The SPI spectrometer aboard the INTEGRAL mission observes regularly the Crab Nebula since 2003. We report on observations distributed over 5.5 years and investigate the variability of the intensity and spectral shape of this remarkable source in the hard X-rays domain up to a few MeV. While single power law models give a good description in the X-ray domain (mean photon index ~ 2.05) and MeV domain (photon index ~ 2.23), crucial information are contained in the evolution of the slope with energy between these two values. This study has been carried out trough individual observations and long duration (~ 400 ks) averaged spectra. The stability of the emission is remarkable and excludes a single power law model. The slopes measured below and above 100 keV agree perfectly with the last values reported in the X-ray and MeV regions respectively, but without indication of a localized break point. This suggests a gradual softening in the emission around 100 keV and thus a continuous evolution rather than an actual change in the mechanism parameters. In the MeV region, no significant deviation from the proposed power law model is visible up to 5-6 MeV. Finally, we take advantage of the spectroscopic capability of the instrument to seek for previously reported spectral features in the covered energy range with negative results for any significant cyclotron or annihilation emission on 400 ks timescales. Beyond the scientific results, the performance and reliability of the SPI instrument is explicitly demonstrated, with some details about the most appropriate analysis method.
In this paper, we suggest a new way to identify single bright sources of Ultra High Energy Cosmic Rays (UHECR) on the sky, on top of background. We look for doublets of events at the highest energies, E > 6 x 10^19 eV, and identify low energy tails, which are deflected by the Galactic Magnetic Field (GMF). For the sources which are detected, we can recover their angular positions on the sky within one degree from the real ones in 68% of cases. The reconstruction of the deflection power of the regular GMF is strongly affected by the value of the turbulent GMF. For typical values of 4 microG near the Earth, one can reconstruct the deflection power with 25% precision in 68% of cases.
Ultra-high-energy (UHE) cosmic rays (CRs) interact with cosmic background radiation through hadronic processes, and the Universe would become `opaque to UHE CRs of energies $sim$($10^{18}$- $10^{20}$) eV over about several tens of Mpc, setting the Gr eisen-Zatsepin-Kuzmin (GZK) horizon. We demonstrate that a non-negligible fraction of the UHE CRs arriving on Earth could originate from beyond the GZK horizon when heavy nuclear CRs, and the population and evolution of UHE CR sources are taken into account. We show how the multi-particle CR horizon is modified by different source populations, and discuss how this leads to the natural emergence of an isotropic flux component in the observed UHE CR background. This component would coexist with an anisotropic foreground component contributed by nearby sources within the GZK horizon.
The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has detected in excess of 1000 sources in the ~20-100 keV band during its surveys of the sky over the past 17 years. We obtained 5 ks observations of 15 unclassified IGR sources with the Chandra X-ray Observatory in order to localize them, to identify optical/IR counterparts, to measure their soft X-ray spectra, and to classify them. For 10 of the IGR sources, we detect Chandra sources that are likely (or in some cases certain) to be the counterparts. IGR J18007-4146 and IGR J15038-6021 both have Gaia parallax distances, placing them at 2.5+0.5-0.4 and 1.1+1.5-0.4 kpc, respectively. We tentatively classify both of them as intermediate polar-type Cataclysmic Variables. Also, IGR J17508-3219 is likely to be a Galactic source, but it is unclear if it is a Dwarf Nova or another type of transient. For IGR J17118-3155, we provide a Chandra localization, but it is unclear if the source is Galactic or extragalactic. Based on either near-IR/IR colors or the presence of extended near-IR emission, we classify four sources as Active Galactic Nuclei (IGR J16181-5407, IGR J16246-4556, IGR J17096-2527, and IGR J19294+1327), and IGR J20310+3835 and IGR J15541-5613 are AGN candidates. In addition, we identified an AGN in the INTEGRAL error circle of IGR J16120-3543 that is a possible counterpart.
152 - Eli Waxman 2008
Ultra high-energy cosmic rays (UHECRs) are believed to be protons accelerated in magnetized plasma outflows of extra-Galactic sources. The acceleration of protons to ~10^{20} eV requires a source power L>10^{47} erg/s. The absence of steady sources o f sufficient power within the GZK horizon of 100 Mpc, implies that UHECR sources are transient. We show that UHECR flares should be accompanied by strong X-ray and gamma-ray emission, and that X-ray and gamma-ray surveys constrain flares which last less than a decade to satisfy at least one of the following conditions: (i) L>10^{50} erg/s; (ii) the power carried by accelerated electrons is lower by a factor >10^2 than the power carried by magnetic fields or by >10^3 than the power in accelerated protons; or (iii) the sources exist only at low redshifts, z<<1. The implausibility of requirements (ii) and (iii) argue in favor of transient sources with L>10^{50} erg/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا