ﻻ يوجد ملخص باللغة العربية
The parallel-tempering method has been applied to numerically study the thermodynamic behavior of a three-dimensional disordered antiferromagnetic Ising model with random fields at spin concentrations corresponding to regions of both weak and strong structural disorder. An analysis of the low-temperature behavior of the model convincingly shows that in the case of a weakly disordered samples there is realized an antiferromagnetic ordered state, while in the region of strong structural disorder the effects of random magnetic fields lead to the realization of a new phase state of the system with a complex domain structure consisting of antiferromagnetic and ferromagnetic domains separated by regions of a spin-glass phase and characterized by a spinglass ground state.
We study spin glass behavior in a random Ising Coulomb antiferromagnet in two and three dimensions using Monte Carlo simulations. In two dimensions, we find a transition at zero temperature with critical exponents consistent with those of the Edwards
The random field q-States Potts model is investigated using exact groundstates and finite-temperature transfer matrix calculations. It is found that the domain structure and the Zeeman energy of the domains resembles for general q the random field Is
The Anderson transitions in a random magnetic field in three dimensions are investigated numerically. The critical behavior near the transition point is analyzed in detail by means of the transfer matrix method with high accuracy for systems both wit
The critical exponent beta =0.17(1) for the three-dimensional random-field Ising model (RFIM) order parameter upon zero-field cooling (ZFC) has been determined using extinction-free magnetic x-ray scattering techniques for Fe(0.85)Zn(0.15)F2. This re
Critical scattering analyses for dilute antiferromagnets are made difficult by the lack of predicted theoretical line shapes beyond mean-field models. Nevertheless, with the use of some general scaling assumptions we have developed a procedure by whi