ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Hotspot Flares and Implications for Cosmic Ray Acceleration and Magnetic Field amplification in Supernova Remnants

296   0   0.0 ( 0 )
 نشر من قبل Yousaf Mahmood Butt
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For more than fifty years, it has been believed that cosmic ray (CR) nuclei are accelerated to high energies in the rapidly expanding shockwaves created by powerful supernova explosions. Yet observational proof of this conjecture is still lacking. Recently, Uchiyama and collaborators reported the detection of small-scale X-ray flares in one such supernova remnant, dubbed RX J1713-3946 (a.k.a. G347.3-0.5), which also emits very energetic, TeV (10^12 eV) range, gamma-rays. They contend that the variability of these X-ray hotspots implies that the magnetic field in the remnant is about a hundred times larger than normally assumed; and this, they say, means that the detected TeV range photons were produced in energetic nuclear interactions, providing a strong argument for acceleration of protons and nuclei to energies of 1 PeV (10^15 eV) and beyond in young supernova remnants. We point out here that the existing multiwavelength data on this object certainly do not support such conclusions. Though intriguing, the small-scale X-ray flares are not the long sought-after smoking gun of nucleonic CR acceleration in SNRs.

قيم البحث

اقرأ أيضاً

Supernova remnants are known to accelerate cosmic rays on account of their non-thermal emission of radio waves, X-rays, and gamma rays. Although there are many models for the acceleration of cosmic rays in Supernova remnants, the escape of cosmic ray s from these sources is yet understudied. We use our time-dependent acceleration code RATPaC to study the acceleration of cosmic rays and their escape in post-adiabatic Supernova remnants and calculate the subsequent gamma-ray emission from inverse-Compton scattering and Pion decay. We performed spherically symmetric 1-D simulations in which we simultaneously solve the transport equations for CRs, magnetic turbulence, and the hydrodynamical flow of the thermal plasma in a volume large enough to keep all CRs in the simulation. The transport equations for cosmic-rays and magnetic turbulence are coupled via the cosmic-ray gradient and the spatial diffusion coefficient of the cosmic rays, while the cosmic-ray feedback onto the shock structure can be ignored. Our simulations span 100kyrs, thus covering the remnants evolution until the beginning of the post-adiabatic phase. At later stages of the evolution cosmic rays over a wide range of energy can reside outside of the remnant, creating spectra that are softer than predicted by standard DSA and feature breaks in the 10-100 GeV-range. The total spectrum of cosmic rays released into the interstellar medium has a spectral index of s~2.4 above roughly 10 GeV which is close to that required by Galactic propagation models. We further find the gamma-ray luminosity to peak around an age of 4,000 years for inverse-Compton-dominated high-energy emission. Remnants expanding in low-density media emit generally more inverse-Compton radiation matching the fact that the brightest known supernova remnants - RCW86, Vela Jr, HESSJ1731-347 and RXJ1713.7-3946 - are all expanding in low density environments.
Supernova remnants (SNRs) are believed to accelerate particles up to high energies through the mechanism of diffusive shock acceleration (DSA). Except for direct plasma simulations, all modeling efforts must rely on a given form of the diffusion coef ficient, a key parameter that embodies the interactions of energetic charged particles with the magnetic turbulence. The so-called Bohm limit is commonly employed. In this paper we revisit the question of acceleration at perpendicular shocks, by employing a realistic model of perpendicular diffusion. Our coefficient reduces to a power-law in momentum for low momenta (of index $alpha$), but becomes independent of the particle momentum at high momenta (reaching a constant value $kappa_{infty}$ above some characteristic momentum $p_{rm c}$). We first provide simple analytical expressions of the maximum momentum that can be reached at a given time with this coefficient. Then we perform time-dependent numerical simulations to investigate the shape of the particle distribution that can be obtained when the particle pressure back-reacts on the flow. We observe that, for a given index $alpha$ and injection level, the shock modifications are similar for different possible values of $p_{rm c}$, whereas the particle spectra differ markedly. Of particular interest, low values of $p_{rm c}$ tend to remove the concavity once thought to be typical of non-linear DSA, and result in steep spectra, as required by recent high-energy observations of Galactic SNRs.
We discuss recent observations of high energy cosmic ray positrons and electrons in the context of hadronic interactions in supernova remnants, the suspected accelerators of galactic cosmic rays. Diffusive shock acceleration can harden the energy spe ctrum of secondary positrons relative to that of the primary protons (and electrons) and thus explain the rise in the positron fraction observed by PAMELA above 10 GeV. We normalize the hadronic interaction rate by holding pion decay to be responsible for the gamma-rays detected by HESS from some SNRs. By simulating the spatial and temporal distribution of SNRs in the Galaxy according to their known statistics, we are able to then fit the electron (plus positron) energy spectrum measured by Fermi. It appears that IceCube has good prospects for detecting the hadronic neutrino fluxes expected from nearby SNRs.
Particle acceleration to suprathermal energies in strong astrophysical shock waves is a widespread phenomenon, generally explained by diffusive shock acceleration. Such shocks can also amplify upstream magnetic field considerably beyond simple compre ssion. The complex plasma physics processes involved are often parameterized by assuming that shocks put some fraction $epsilon_e$ of their energy into fast particles, and another fraction $epsilon_B$ into magnetic field. Modelers of shocks in supernovae, supernova remnants, and gamma-ray bursters, among other locations, often assume typical values for these fractions, presumed to remain constant in time. However, it is rare that enough properties of a source are independently constrained that values of the epsilons can be inferred directly. Supernova remnants (SNRs) can provide such circumstances. Here we summarize results from global fits to spatially integrated emission in six young SNRs, finding $10^{-4} le epsilon_e le 0.05$ and $0.001 le epsilon_B le 0.1$. These large variations might be put down to the differing ages and environments of these SNRs, so we conduct a detailed analysis of a single remnant, that of Keplers supernova. Both epsilons can be determined at seven different locations around the shock, and we find even larger ranges for both epsilons, as well as for their ratio (thus independent of the shock energy itself). We conclude that unknown factors have a large influence on the efficiency of both processes. Shock obliquity, upstream neutral fraction, or other possibilities need to be explored, while calculations assuming fixed values of the epsilons should be regarded as provisional.
The spectrum of cosmic ray protons and electrons released by supernova remnants throughout their evolution is poorly known, because of the difficulty in accounting for particle escape and confinement in the downstream of a shock front, where both adi abatic and radiative losses are present. Here we calculate the spectrum of cosmic ray protons released during the evolution of supernovae of different types, accounting for the escape from upstream and for adiabatic losses of particles advected downstream of the shock and liberated at later times. The same calculation is carried out for electrons. The magnetic field in the post-shock region is calculated by using an analytic treatment of the magnetic field amplification due to non--resonant and resonant streaming instability and their saturation. We find that when the field is the result of the growth of the cosmic-ray--driven non--resonant instability alone, the spectrum of electrons and protons released by a supernova remnant are indeed different, but such a difference becomes appreciable only at energies $gtrsim 100-1000$ GeV, while observations of the electron spectrum require such a difference to be present at energies as low as $sim 10$ GeV. An effect at such low energies requires substantial magnetic field amplification in the late stages of the supernova remnant evolution (shock velocity $ll 1000$ km/s), perhaps not due to streaming instability but hydrodynamical processes. We comment on the feasibility of such conditions and speculate on the possibility that the difference in spectral shape between electrons and protons may reflect either some unknown acceleration effect, or additional energy losses in cocoons around the sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا