ﻻ يوجد ملخص باللغة العربية
The Minkowski spacetime quantum Clifford algebra structure associated with the conformal group and the Clifford-Hopf alternative k-deformed quantum Poincare algebra is investigated in the Atiyah-Bott-Shapiro mod 8 theorem context. The resulting algebra is equivalent to the deformed anti-de Sitter algebra U_q(so(3,2)), when the associated Clifford-Hopf algebra is taken into account, together with the associated quantum Clifford algebra and a (not braided) deformation of the periodicity Atiyah-Bott-Shapiro theorem.
This paper provides motivation as well as a method of construction for Hopf algebras, starting from an associative algebra. The dualization technique involved relies heavily on the use of Sweedlers dual.
Gauged PT quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity
We present a short review of the action and coaction of Hopf algebras on Clifford algebras as an introduction to physically meaningful examples. Some q-deformed Clifford algebras are studied from this context and conclusions are derived.
In this paper, first we introduce the notion of a Reynolds operator on an $n$-Lie algebra and illustrate the relationship between Reynolds operators and derivations on an $n$-Lie algebra. We give the cohomology theory of Reynolds operators on an $n$-
We present a connection between W-algebras and Yangians, in the case of gl(N) algebras, as well as for twisted Yangians and/or super-Yangians. This connection allows to construct an R-matrix for the W-algebras, and to classify their finite-dimensiona