ترغب بنشر مسار تعليمي؟ اضغط هنا

XMMU J134736.6+173403: an eclipsing LMXB in quiescence or a peculiar AGN?

47   0   0.0 ( 0 )
 نشر من قبل Stefania Carpano
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. We report the discovery of a peculiar object observed serendipitously with XMM-Newton. We present its timing and spectral properties and investigate its optical counterpart. Methods. The light curve of the X-ray source, its spectrum, and the spectrum of the best optical counterpart are presented and analyzed. Results. The X-ray flux decreases by a factor of 6.5 within 1 h and stays in a low state for at least 10 h, thereby suggesting the presence of an eclipse. The spectrum is very soft, a power law with a slope of Gamma~2.8, and does not change significantly before and after the flux drop. The source is spatially coincident within few arc-seconds with a Seyfert~2 galaxy belonging to a galaxy pair. Conclusions. Although the background AGN seems the best counterpart, neither the temporal nor the spectral properties of the X-ray source are compatible with it. We investigate the possibility of having a foreground low-mass X-ray binary in quiescence, where the companion is not detected in the optical wavelength.

قيم البحث

اقرأ أيضاً

XMMU J134736.6+173403 is an X-ray source discovered serendipitously by XMM-Newton which was found to be spatially coincident with a pair of galaxies, including a Seyfert 2 galaxy, but presented in 2003 a very sharp persistent flux drop of a factor 6. 5 within 1h. From the analysis of a set of 29 Swift observations conducted from the 6 February to the 23 May 2008, we discovered twin-peak quasi-periodic oscillations (QPOs) with periods of 23.82+-0.07 h and 71.44+-0.57 h. Using a Chandra observation of 2008, we evaluate more accurately the position of the X-ray source and show that the new source coordinates coincide with the position of the Seyfert 2 galaxy. We provide a detailed spectral energy distribution of the AGN counterpart using multi-wavelength observations. The AGN is radio-loud and the broadband SED modelling indicates a black hole with a mass of 9.8x10^6 Msun, that accretes at an Eddington ratio of 0.047. QPOs for active galaxies have been reported so far in only few cases, the most reliable one being from RE J1034+396 for which a 1 h periodicity has been discovered analysing a ~91 ks XMM-Newton observation. Twin peak QPOs with an observed frequency ratio of 3:1 have not been reported so far for any AGN. From resonance models of the epicyclic frequencies we evaluate the different possible mass-spin relations. Its still not clear what could have been the origin of the high flux and sharp drop only observed in 2003.
We perform a quantitative morphological comparison between the hosts of Active Galactic Nuclei (AGN) and quiescent galaxies at intermediate redshifts (z~0.7). The imaging data are taken from the large HST/ACS mosaics of the GEMS and STAGES surveys. O ur main aim is to test whether nuclear activity at this cosmic epoch is triggered by major mergers. Using images of quiescent galaxies and stars, we create synthetic AGN images to investigate the impact of an optical nucleus on the morphological analysis of AGN hosts. Galaxy morphologies are parameterized using the asymmetry index A, concentration index C, Gini coefficient G and M20 index. A sample of ~200 synthetic AGN is matched to 21 real AGN in terms of redshift, host brightness and host-to-nucleus ratio to ensure a reliable comparison between active and quiescent galaxies. The optical nuclei strongly affect the morphological parameters of the underlying host galaxy. Taking these effects into account, we find that the morphologies of the AGN hosts are clearly distinct from galaxies undergoing violent gravitational interactions. In fact, the host galaxies distributions in morphological descriptor space are more similar to undisturbed galaxies than major mergers. Intermediate-luminosity (Lx < 10^44 erg/s) AGN hosts at z~0.7 show morphologies similar to the general population of massive galaxies with significant bulges at the same redshifts. If major mergers are the driver of nuclear activity at this epoch, the signatures of gravitational interactions fade rapidly before the optical AGN phase starts, making them undetectable on single-orbit HST images, at least with usual morphological descriptors. This could be investigated in future synthetic observations created from numerical simulations of galaxy-galaxy interactions.
The X-ray source XSS J12270-4859 has been first suggested to be a magnetic cataclysmic variable of Intermediate Polar type on the basis of its optical spectrum and a possible 860 s X-ray periodicity. However further X-ray observations by the Suzaku a nd XMM-Newton satellites did not confirm this periodicity but show a very peculiar variability, including moderate repetitive flares and numerous absorption dips. These characteristics together with a suspected 4.3 h orbital period would suggest a possible link with the so- called dipping sources, a sub-class of Low-Mass X-ray Binaries (LMXB). Based on the released FERMI catalogues, the source was also found coincident with a very high energy (0.1-300 GeV) VHE source 2FGL J1227.7-4853. The good positional coincidence, together with the lack of any other bright X-ray sources in the field, makes this identification highly probable. However, none of the other standard LMXBs have been so far detected by FERMI. Most galactic VHE sources are associated with rotation-powered pulsars. We present here new results obtained from a 30 ksec high-time resolution XMM observations in January 2011 that confirm the flaring-dipping behaviour and provide upper limits on fast X-ray pulsations. We discuss the possible association of the source with either a microquasar or an accreting rotation powered pulsar.
Aims: We study a peculiar object with a projected position close to the nucleus of M51. It is unusually large for a star cluster in M51 and we therefore investigate the three most likely options to explain this object: (a) a background galaxy, (b) a cluster in the disk of M51 and (c) a cluster in M51, but in front of the disk. Methods: We use HST/ACS and HST/NICMOS broad-band photometry to study the properties of this object. Assuming the object is a star cluster, we fit the metallicity, age, mass and extinction using simple stellar population models. Assuming the object is a background galaxy, we estimate the extinction from the colour of the background around the object. We study the structural parameters of the object by fitting the spatial profile with analytical models. Results: We find de-reddened colours of the object which are bluer than expected for a typical elliptical galaxy, and the central surface brightness is brighter than the typical surface brightness of a disc galaxy. It is therefore not likely that the object is a background galaxy. Assuming the object is a star cluster in the disc of M51, we estimate an age and mass of 0.7 Gyr and 2.2 x 10^5 msun, respectively (with the extinction fixed to E(B-V) = 0.2). Considering the large size of the object, we argue that in this scenario we observe the cluster just prior to final dissolution. If we fit for the extinction as a free parameter, a younger age is allowed and the object is not close to final dissolution. Alternatively, the object could be a star cluster in M51, but in front of the disc, with an age of 1.4 Gyr and mass M = 1.7 x 10^5 msun. Its effective radius is between ~12-25 pc. This makes the object a fuzzy star cluster, raising the issue of how an object of this age would end up outside the disc.
152 - B.R. McNamara 2009
Powering the 10^62 erg nuclear outburst in the MS0735.6+7421 cluster central galaxy by accretion implies that its supermassive black hole (SMBH) grew by ~6x10^8 solar masses over the past 100 Myr. We place upper limits on the amount of cold gas and s tar formation near the nucleus of <10^9 solar masses and <2 solar masses per year, respectively. These limits imply that an implausibly large fraction of the preexisting cold gas in the bulge must have been consumed by its SMBH at the rate of ~3-5 solar masses per year while leaving no trace of star formation. Such a high accretion rate would be difficult to maintain by stellar accretion or the Bondi mechanism, unless the black hole mass approaches 10^11 solar masses. Its feeble nuclear luminosities in the UV, I, and X-ray bands compared to its enormous mechanical power are inconsistent with rapid accretion onto a ~5x10^9 solar mass black hole. We suggest instead that the AGN outburst is powered by a rapidly-spinning black hole. A maximally-spinning, 10^9 solar mass black hole contains enough rotational energy, ~10^62 erg, to quench a cooling flow over its lifetime and to contribute significantly to the excess entropy found in the hot atmospheres of groups and clusters. Two modes of AGN feedback may be quenching star formation in elliptical galaxies centered in cooling halos at late times. An accretion mode that operates in gas-rich systems, and a spin mode operating at modest accretion rates. The spin conjecture may be avoided in MS0735 by appealing to Bondi accretion onto a central black hole whose mass greatly exceeds 10^10 solar mass. The host galaxys unusually large, 3.8 kpc stellar core radius (light deficit) may witness the presence of an ultramassive black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا