ترغب بنشر مسار تعليمي؟ اضغط هنا

Topologies and Laplacian spectra of a deterministic uniform recursive tree

508   0   0.0 ( 0 )
 نشر من قبل Zhongzhi Zhang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The uniform recursive tree (URT) is one of the most important models and has been successfully applied to many fields. Here we study exactly the topological characteristics and spectral properties of the Laplacian matrix of a deterministic uniform recursive tree, which is a deterministic version of URT. Firstly, from the perspective of complex networks, we determine the main structural characteristics of the deterministic tree. The obtained vigorous results show that the network has an exponential degree distribution, small average path length, power-law distribution of node betweenness, and positive degree-degree correlations. Then we determine the complete Laplacian spectra (eigenvalues) and their corresponding eigenvectors of the considered graph. Interestingly, all the Laplacian eigenvalues are distinct.



قيم البحث

اقرأ أيضاً

As one of the most significant models, the uniform recursive tree (URT) has found many applications in a variety of fields. In this paper, we study rigorously the structural features and spectral properties of the adjacency matrix for a family of det erministic uniform recursive trees (DURTs) that are determinist
We present a finite-order system of recurrence relations for a permanent of circulant matrices containing a band of k any-value diagonals on top of a uniform matrix (for k = 1, 2, and 3) as well as the method for deriving such recurrence relations wh ich is based on the permanents of the matrices with defects. The proposed system of linear recurrence equations with variable coefficients provides a powerful tool for the analysis of the circulant permanents, their fast, linear time computing and finding their asymptotics in a large-matrix-size limit. The latter problem is an open fundamental problem. Its solution would be tremendously important for a unified analysis of a wide range of the natures #P-hard problems, including problems in the physics of many-body systems, critical phenomena, quantum computing, quantum field theory, theory of chaos, fractals, theory of graphs, number theory, combinatorics, cryptography, etc.
Extended Vicsek fractals (EVF) are the structures constructed by introducing linear spacers into traditional Vicsek fractals. Here we study the Laplacian spectra of the EVF. In particularly, the recurrence relations for the Laplacian spectra allow us to obtain an analytic expression for the sum of all inverse nonvanishing Laplacian eigenvalues. This quantity characterizes the large-scale properties, such as the gyration radius of the polymeric structures, or the global mean-first passage time for the random walk processes. Introduction of the linear spacers leads to local heterogeneities, which reveal themselves, for example, in the dynamics of EVF under external forces.
150 - Yuan Lin , Zhongzhi Zhang 2013
In this paper, we propose a general framework for the trapping problem on a weighted network with a perfect trap fixed at an arbitrary node. By utilizing the spectral graph theory, we provide an exact formula for mean first-passage time (MFPT) from o ne node to another, based on which we deduce an explicit expression for average trapping time (ATT) in terms of the eigenvalues and eigenvectors of the Laplacian matrix associated with the weighted graph, where ATT is the average of MFPTs to the trap over all source nodes. We then further derive a sharp lower bound for the ATT in terms of only the local information of the trap node, which can be obtained in some graphs. Moreover, we deduce the ATT when the trap is distributed uniformly in the whole network. Our results show that network weights play a significant role in the trapping process. To apply our framework, we use the obtained formulas to study random walks on two specific networks: trapping in weighted uncorrelated networks with a deep trap, the weights of which are characterized by a parameter, and Levy random walks in a connected binary network with a trap distributed uniformly, which can be looked on as random walks on a weighted network. For weighted uncorrelated networks we show that the ATT to any target node depends on the weight parameter, that is, the ATT to any node can change drastically by modifying the parameter, a phenomenon that is in contrast to that for trapping in binary networks. For Levy random walks in any connected network, by using their equivalence to random walks on a weighted complete network, we obtain the optimal exponent characterizing Levy random walks, which have the minimal average of ATTs taken over all target nodes.
We explore the concepts of self-similarity, dimensionality, and (multi)scaling in a new family of recursive scale-free nets that yield themselves to exact analysis through renormalization techniques. All nets in this family are self-similar and some are fractals - possessing a finite fractal dimension - while others are small world (their diameter grows logarithmically with their size) and are infinite-dimensional. We show how a useful measure of transfinite dimension may be defined and applied to the small world nets. Concerning multiscaling, we show how first-passage time for diffusion and resistance between hub (the most connected nodes) scale differently than for other nodes. Despite the different scalings, the Einstein relation between diffusion and conductivity holds separately for hubs and nodes. The transfinite exponents of small world nets obey Einstein relations analogous to those in fractal nets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا