ﻻ يوجد ملخص باللغة العربية
The pi bands of epitaxially grown graphene are studied by using high resolution angle resolved photoemission spectroscopy. Clear deviations from the conical dispersion expected for massless Dirac fermions and an anomalous increase of the scattering rate are observed in the vicinity of the Dirac point energy. Possible explanations for such anomalies are discussed in terms of many-body interactions and the opening of a gap. We present detailed experimental evidences in support of the gap scenario. This finding reveals a fundamental intrinsic property of epitaxial graphene and demonstrates the possibility of engineering the band gap in epitaxial graphene.
We investigate the ultrafast relaxation dynamics of hot Dirac fermionic quasiparticles in multilayer epitaxial graphene using ultrafast optical differential transmission spectroscopy. We observe DT spectra which are well described by interband transi
We studied the effect of quantum confinement on the size of the band gap in single layer epitaxial graphene. Samples with different graphene terrace sizes are studied by using low energy electron microscopy (LEEM) and angle-resolved photoemission spe
The capability to control the type and amount of charge carriers in a material and, in the extreme case, the transition from metal to insulator is one of the key challenges of modern electronics. By employing angle resolved photoemission spectroscopy
The interplay of electron-phonon (el-ph) and electron-electron (el-el) interactions in epitaxial graphene is studied by directly probing its electronic structure. We found a strong coupling of electrons to the soft part of the A1g phonon evident by a
Quantum systems in confined geometries are host to novel physical phenomena. Examples include quantum Hall systems in semiconductors and Dirac electrons in graphene. Interest in such systems has also been intensified by the recent discovery of a larg