ترغب بنشر مسار تعليمي؟ اضغط هنا

NNNLO results on top-quark pair production near threshold

318   0   0.0 ( 0 )
 نشر من قبل Martin Beneke
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف M. Beneke




اسأل ChatGPT حول البحث

We present new results on the NNNLO top-antitop production cross section near threshold from potential and ultrasoft gluon corrections. The new non-logarithmic third-order terms are in the 10% range and lead to a significant reduction in the theoretical error.



قيم البحث

اقرأ أيضاً

We investigate top quark pair production near the threshold where the pair invariant mass $M_{tbar{t}}$ approaches $2m_t$, which provides sensitive observables to extract the top quark mass $m_t$. Using the effective field theory methods, we derive a factorization and resummation formula for kinematic distributions in the threshold limit up to the next-to-leading power, which resums higher order Coulomb corrections to all orders in the strong coupling constant. Our formula is similar to those in the literature but differs in several important aspects. We apply our formula to the $M_{tbar{t}}$ distribution, as well as to the double differential cross section with respect to $M_{tbar{t}}$ and the rapidity of the $tbar{t}$ pair. We find that the resummation effects significantly increase the cross sections near the threshold, and lead to predictions better compatible with experimental data than the fixed-order ones. We demonstrate that incorporating resummation effects in the top quark mass determination can shift the extracted value of $m_t$ by as large as 1.4 GeV. The shift is much larger than the estimated uncertainties in previous experimental studies, and leads to a value of the top quark pole mass more consistent with the current world average.
219 - M. Beneke 2011
We compute the total top-quark pair production cross section at the Tevatron and LHC based on approximate NNLO results, and on the summation of threshold logarithms and Coulomb enhancements to all orders with next-to-next-to-leading logarithmic (NNLL ) accuracy, including bound-state effects. We find sigma_{tbar t} = 7.22^{+0.31+0.71}_{-0.47-0.55} pb at Tevatron and sigma_{tbar t} = 162.6^{+7.4+15.4}_{-7.6-14.7} pb at LHC with 7 TeV c.o.m. energy, for m_t=173.3 GeV. The implementation of joint soft and Coulomb resummation, its ambiguities, and the present theoretical uncertainty are discussed in detail. We further obtain new approximate results at N3LO.
202 - M. Beneke 2008
We compute the third-order correction to the heavy-quark current correlation function due to the emission and absorption of an ultrasoft gluon. Our result supplies a missing contribution to top-quark pair production near threshold and the determination of the bottom quark mass from QCD sum rules.
We study the effect of the resummation of logarithms for tbar{t} production near threshold and inclusive electromagnetic decays of heavy quarkonium. This analysis is complete at next-to-next-to-leading order and includes the full resummation of logar ithms at next-to-leading-logarithmic accuracy and some partial contributions at next-to-next-to-leading logarithmic accuracy. Compared with fixed-order computations at next-to-next-to-leading order the scale dependence and convergence of the perturbative series is greatly improved for both the position of the peak and the normalization of the total cross section. Nevertheless, we identify a possible source of large scale dependence in the result. At present we estimate the remaining theoretical uncertainty of the normalization of the total cross section to be of the order of 10% and for the position of the peak of the order of 100 MeV.
We perform a dedicated study of the four-fermion production process e- e+ -> mu- nubar_mu u dbar X near the W pair-production threshold in view of the importance of this process for a precise measurement of the W boson mass. Accurate theoretical pred ictions for this process require a systematic treatment of finite-width effects. We use unstable-particle effective field theory (EFT) to perform an expansion in the coupling constants, GammaW/MW, and the non-relativistic velocity v of the W boson up to next-to-leading order in GammaW/MW ~ alpha_ew ~ v^2. We find that the dominant theoretical uncertainty in MW is currently due to an incomplete treatment of initial-state radiation. The remaining uncertainty of the NLO EFT calculation translates into delta MW ~ 10-15 MeV, and to about 5 MeV with additional input from the NLO four-fermion calculation in the full theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا