ﻻ يوجد ملخص باللغة العربية
We investigate both experimentally and theoretically disorder induced damping of Bloch oscillations of Bose-Einstein condensates in optical lattices. The spatially inhomogeneous force responsible for the damping is realised by a combination of a disordered optical and a magnetic gradient potential. We show that the inhomogeneity of this force results in a broadening of the quasimomentum spectrum, which in turn causes damping of the centre-of-mass oscillation. We quantitatively compare the obtained damping rates to the simulations using the Gross-Pitaevskii equation. Our results are relevant for high precision experiments on very small forces, which require the observation of a large number of oscillation cycles.
We discuss the method for the measurement of the gravity acceleration g by means of Bloch oscillations of an accelerated BEC in an optical lattice. This method has a theoretical critical point due to the fact that the period of the Bloch oscillations
The interplay between disorder and interactions is a leit-motiv of condensed matter physics, since it constitutes the driving mechanism of the metal-insulator transition. Bose-Einstein condensates in optical potentials are proving to be powerful tool
We report on the experimental investigation of the response of a three-dimensional Bose-Einstein condensate (BEC) in the presence of a one-dimensional (1D) optical lattice. By means of Bragg spectroscopy we probe the band structure of the excitation
Solitons are among the most distinguishing fundamental excitations in a wide range of non-linear systems such as water in narrow channels, high speed optical communication, molecular biology and astrophysics. Stabilized by a balance between spreading